| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtord | Structured version Visualization version GIF version | ||
| Description: A modus tollens deduction involving disjunction. (Contributed by Jeff Hankins, 15-Jul-2009.) |
| Ref | Expression |
|---|---|
| mtord.1 | ⊢ (𝜑 → ¬ 𝜒) |
| mtord.2 | ⊢ (𝜑 → ¬ 𝜃) |
| mtord.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ∨ 𝜃))) |
| Ref | Expression |
|---|---|
| mtord | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtord.2 | . 2 ⊢ (𝜑 → ¬ 𝜃) | |
| 2 | mtord.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ∨ 𝜃))) | |
| 3 | mtord.1 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
| 4 | pm2.53 851 | . . 3 ⊢ ((𝜒 ∨ 𝜃) → (¬ 𝜒 → 𝜃)) | |
| 5 | 2, 3, 4 | syl6ci 71 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 6 | 1, 5 | mtod 198 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: ecase2d 1031 swoer 8777 inar1 10816 rtprmirr 26804 |
| Copyright terms: Public domain | W3C validator |