Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mtord | Structured version Visualization version GIF version |
Description: A modus tollens deduction involving disjunction. (Contributed by Jeff Hankins, 15-Jul-2009.) |
Ref | Expression |
---|---|
mtord.1 | ⊢ (𝜑 → ¬ 𝜒) |
mtord.2 | ⊢ (𝜑 → ¬ 𝜃) |
mtord.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ∨ 𝜃))) |
Ref | Expression |
---|---|
mtord | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtord.2 | . 2 ⊢ (𝜑 → ¬ 𝜃) | |
2 | mtord.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ∨ 𝜃))) | |
3 | mtord.1 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
4 | pm2.53 849 | . . 3 ⊢ ((𝜒 ∨ 𝜃) → (¬ 𝜒 → 𝜃)) | |
5 | 2, 3, 4 | syl6ci 71 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
6 | 1, 5 | mtod 201 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-or 846 |
This theorem is referenced by: swoer 8330 inar1 10228 rtprmirr 39837 |
Copyright terms: Public domain | W3C validator |