MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mtord Structured version   Visualization version   GIF version

Theorem mtord 878
Description: A modus tollens deduction involving disjunction. (Contributed by Jeff Hankins, 15-Jul-2009.)
Hypotheses
Ref Expression
mtord.1 (𝜑 → ¬ 𝜒)
mtord.2 (𝜑 → ¬ 𝜃)
mtord.3 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
mtord (𝜑 → ¬ 𝜓)

Proof of Theorem mtord
StepHypRef Expression
1 mtord.2 . 2 (𝜑 → ¬ 𝜃)
2 mtord.3 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
3 mtord.1 . . 3 (𝜑 → ¬ 𝜒)
4 pm2.53 849 . . 3 ((𝜒𝜃) → (¬ 𝜒𝜃))
52, 3, 4syl6ci 71 . 2 (𝜑 → (𝜓𝜃))
61, 5mtod 201 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-or 846
This theorem is referenced by:  swoer  8330  inar1  10228  rtprmirr  39837
  Copyright terms: Public domain W3C validator