Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e12 Structured version   Visualization version   GIF version

Theorem e12 44762
Description: A virtual deduction elimination rule (see sylsyld 61). (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e12.1 (   𝜑   ▶   𝜓   )
e12.2 (   𝜑   ,   𝜒   ▶   𝜃   )
e12.3 (𝜓 → (𝜃𝜏))
Assertion
Ref Expression
e12 (   𝜑   ,   𝜒   ▶   𝜏   )

Proof of Theorem e12
StepHypRef Expression
1 e12.1 . . 3 (   𝜑   ▶   𝜓   )
21vd12 44639 . 2 (   𝜑   ,   𝜒   ▶   𝜓   )
3 e12.2 . 2 (   𝜑   ,   𝜒   ▶   𝜃   )
4 e12.3 . 2 (𝜓 → (𝜃𝜏))
52, 3, 4e22 44710 1 (   𝜑   ,   𝜒   ▶   𝜏   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 44608  (   wvd2 44616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-vd1 44609  df-vd2 44617
This theorem is referenced by:  e12an  44763  trsspwALT  44856  sspwtr  44859  pwtrVD  44862  snssiALTVD  44865  elex2VD  44876  elex22VD  44877  eqsbc2VD  44878  en3lplem1VD  44881  3ornot23VD  44885  orbi1rVD  44886  19.21a3con13vVD  44890  exbirVD  44891  tratrbVD  44899  ssralv2VD  44904  sbcim2gVD  44913  sbcbiVD  44914  relopabVD  44939  19.41rgVD  44940  ax6e2eqVD  44945  ax6e2ndeqVD  44947  vk15.4jVD  44952  con3ALTVD  44954
  Copyright terms: Public domain W3C validator