![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e12 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule (see sylsyld 61). (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e12.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e12.2 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) |
e12.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
e12 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e12.1 | . . 3 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | 1 | vd12 44571 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜓 ) |
3 | e12.2 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) | |
4 | e12.3 | . 2 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
5 | 2, 3, 4 | e22 44642 | 1 ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 44540 ( wvd2 44548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-vd1 44541 df-vd2 44549 |
This theorem is referenced by: e12an 44696 trsspwALT 44789 sspwtr 44792 pwtrVD 44795 snssiALTVD 44798 elex2VD 44809 elex22VD 44810 eqsbc2VD 44811 en3lplem1VD 44814 3ornot23VD 44818 orbi1rVD 44819 19.21a3con13vVD 44823 exbirVD 44824 tratrbVD 44832 ssralv2VD 44837 sbcim2gVD 44846 sbcbiVD 44847 relopabVD 44872 19.41rgVD 44873 ax6e2eqVD 44878 ax6e2ndeqVD 44880 vk15.4jVD 44885 con3ALTVD 44887 |
Copyright terms: Public domain | W3C validator |