| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e12 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule (see sylsyld 61). (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e12.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e12.2 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) |
| e12.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| e12 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e12.1 | . . 3 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | 1 | vd12 44577 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜓 ) |
| 3 | e12.2 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) | |
| 4 | e12.3 | . 2 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 5 | 2, 3, 4 | e22 44648 | 1 ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44546 ( wvd2 44554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd1 44547 df-vd2 44555 |
| This theorem is referenced by: e12an 44701 trsspwALT 44794 sspwtr 44797 pwtrVD 44800 snssiALTVD 44803 elex2VD 44814 elex22VD 44815 eqsbc2VD 44816 en3lplem1VD 44819 3ornot23VD 44823 orbi1rVD 44824 19.21a3con13vVD 44828 exbirVD 44829 tratrbVD 44837 ssralv2VD 44842 sbcim2gVD 44851 sbcbiVD 44852 relopabVD 44877 19.41rgVD 44878 ax6e2eqVD 44883 ax6e2ndeqVD 44885 vk15.4jVD 44890 con3ALTVD 44892 |
| Copyright terms: Public domain | W3C validator |