Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e12 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule (see sylsyld 61). (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e12.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e12.2 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) |
e12.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
e12 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e12.1 | . . 3 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | 1 | vd12 42109 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜓 ) |
3 | e12.2 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) | |
4 | e12.3 | . 2 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
5 | 2, 3, 4 | e22 42180 | 1 ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 42078 ( wvd2 42086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-vd1 42079 df-vd2 42087 |
This theorem is referenced by: e12an 42234 trsspwALT 42327 sspwtr 42330 pwtrVD 42333 snssiALTVD 42336 elex2VD 42347 elex22VD 42348 eqsbc2VD 42349 en3lplem1VD 42352 3ornot23VD 42356 orbi1rVD 42357 19.21a3con13vVD 42361 exbirVD 42362 tratrbVD 42370 ssralv2VD 42375 sbcim2gVD 42384 sbcbiVD 42385 relopabVD 42410 19.41rgVD 42411 ax6e2eqVD 42416 ax6e2ndeqVD 42418 vk15.4jVD 42423 con3ALTVD 42425 |
Copyright terms: Public domain | W3C validator |