Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e12 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule (see sylsyld 61). (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e12.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e12.2 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) |
e12.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
e12 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e12.1 | . . 3 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | 1 | vd12 42593 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜓 ) |
3 | e12.2 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) | |
4 | e12.3 | . 2 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
5 | 2, 3, 4 | e22 42664 | 1 ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 42562 ( wvd2 42570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-vd1 42563 df-vd2 42571 |
This theorem is referenced by: e12an 42718 trsspwALT 42811 sspwtr 42814 pwtrVD 42817 snssiALTVD 42820 elex2VD 42831 elex22VD 42832 eqsbc2VD 42833 en3lplem1VD 42836 3ornot23VD 42840 orbi1rVD 42841 19.21a3con13vVD 42845 exbirVD 42846 tratrbVD 42854 ssralv2VD 42859 sbcim2gVD 42868 sbcbiVD 42869 relopabVD 42894 19.41rgVD 42895 ax6e2eqVD 42900 ax6e2ndeqVD 42902 vk15.4jVD 42907 con3ALTVD 42909 |
Copyright terms: Public domain | W3C validator |