| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e12 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule (see sylsyld 61). (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e12.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e12.2 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) |
| e12.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| e12 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e12.1 | . . 3 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | 1 | vd12 44592 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜓 ) |
| 3 | e12.2 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) | |
| 4 | e12.3 | . 2 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 5 | 2, 3, 4 | e22 44663 | 1 ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44561 ( wvd2 44569 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd1 44562 df-vd2 44570 |
| This theorem is referenced by: e12an 44716 trsspwALT 44809 sspwtr 44812 pwtrVD 44815 snssiALTVD 44818 elex2VD 44829 elex22VD 44830 eqsbc2VD 44831 en3lplem1VD 44834 3ornot23VD 44838 orbi1rVD 44839 19.21a3con13vVD 44843 exbirVD 44844 tratrbVD 44852 ssralv2VD 44857 sbcim2gVD 44866 sbcbiVD 44867 relopabVD 44892 19.41rgVD 44893 ax6e2eqVD 44898 ax6e2ndeqVD 44900 vk15.4jVD 44905 con3ALTVD 44907 |
| Copyright terms: Public domain | W3C validator |