![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e12 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule (see sylsyld 61). (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e12.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e12.2 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) |
e12.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
e12 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e12.1 | . . 3 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | 1 | vd12 43850 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜓 ) |
3 | e12.2 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) | |
4 | e12.3 | . 2 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
5 | 2, 3, 4 | e22 43921 | 1 ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 43819 ( wvd2 43827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-vd1 43820 df-vd2 43828 |
This theorem is referenced by: e12an 43975 trsspwALT 44068 sspwtr 44071 pwtrVD 44074 snssiALTVD 44077 elex2VD 44088 elex22VD 44089 eqsbc2VD 44090 en3lplem1VD 44093 3ornot23VD 44097 orbi1rVD 44098 19.21a3con13vVD 44102 exbirVD 44103 tratrbVD 44111 ssralv2VD 44116 sbcim2gVD 44125 sbcbiVD 44126 relopabVD 44151 19.41rgVD 44152 ax6e2eqVD 44157 ax6e2ndeqVD 44159 vk15.4jVD 44164 con3ALTVD 44166 |
Copyright terms: Public domain | W3C validator |