| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e12 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule (see sylsyld 61). (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e12.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e12.2 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) |
| e12.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| e12 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e12.1 | . . 3 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | 1 | vd12 44639 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜓 ) |
| 3 | e12.2 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) | |
| 4 | e12.3 | . 2 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 5 | 2, 3, 4 | e22 44710 | 1 ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44608 ( wvd2 44616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd1 44609 df-vd2 44617 |
| This theorem is referenced by: e12an 44763 trsspwALT 44856 sspwtr 44859 pwtrVD 44862 snssiALTVD 44865 elex2VD 44876 elex22VD 44877 eqsbc2VD 44878 en3lplem1VD 44881 3ornot23VD 44885 orbi1rVD 44886 19.21a3con13vVD 44890 exbirVD 44891 tratrbVD 44899 ssralv2VD 44904 sbcim2gVD 44913 sbcbiVD 44914 relopabVD 44939 19.41rgVD 44940 ax6e2eqVD 44945 ax6e2ndeqVD 44947 vk15.4jVD 44952 con3ALTVD 44954 |
| Copyright terms: Public domain | W3C validator |