| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e12 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule (see sylsyld 61). (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e12.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e12.2 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) |
| e12.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| e12 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e12.1 | . . 3 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | 1 | vd12 44590 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜓 ) |
| 3 | e12.2 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) | |
| 4 | e12.3 | . 2 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 5 | 2, 3, 4 | e22 44661 | 1 ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44559 ( wvd2 44567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd1 44560 df-vd2 44568 |
| This theorem is referenced by: e12an 44714 trsspwALT 44807 sspwtr 44810 pwtrVD 44813 snssiALTVD 44816 elex2VD 44827 elex22VD 44828 eqsbc2VD 44829 en3lplem1VD 44832 3ornot23VD 44836 orbi1rVD 44837 19.21a3con13vVD 44841 exbirVD 44842 tratrbVD 44850 ssralv2VD 44855 sbcim2gVD 44864 sbcbiVD 44865 relopabVD 44890 19.41rgVD 44891 ax6e2eqVD 44896 ax6e2ndeqVD 44898 vk15.4jVD 44903 con3ALTVD 44905 |
| Copyright terms: Public domain | W3C validator |