| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e12 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule (see sylsyld 61). (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e12.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e12.2 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) |
| e12.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| e12 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e12.1 | . . 3 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | 1 | vd12 44720 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜓 ) |
| 3 | e12.2 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) | |
| 4 | e12.3 | . 2 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 5 | 2, 3, 4 | e22 44791 | 1 ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44689 ( wvd2 44697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd1 44690 df-vd2 44698 |
| This theorem is referenced by: e12an 44844 trsspwALT 44937 sspwtr 44940 pwtrVD 44943 snssiALTVD 44946 elex2VD 44957 elex22VD 44958 eqsbc2VD 44959 en3lplem1VD 44962 3ornot23VD 44966 orbi1rVD 44967 19.21a3con13vVD 44971 exbirVD 44972 tratrbVD 44980 ssralv2VD 44985 sbcim2gVD 44994 sbcbiVD 44995 relopabVD 45020 19.41rgVD 45021 ax6e2eqVD 45026 ax6e2ndeqVD 45028 vk15.4jVD 45033 con3ALTVD 45035 |
| Copyright terms: Public domain | W3C validator |