![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e12 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule (see sylsyld 61). (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e12.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e12.2 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) |
e12.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
e12 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e12.1 | . . 3 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | 1 | vd12 44011 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜓 ) |
3 | e12.2 | . 2 ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) | |
4 | e12.3 | . 2 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
5 | 2, 3, 4 | e22 44082 | 1 ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 43980 ( wvd2 43988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-vd1 43981 df-vd2 43989 |
This theorem is referenced by: e12an 44136 trsspwALT 44229 sspwtr 44232 pwtrVD 44235 snssiALTVD 44238 elex2VD 44249 elex22VD 44250 eqsbc2VD 44251 en3lplem1VD 44254 3ornot23VD 44258 orbi1rVD 44259 19.21a3con13vVD 44263 exbirVD 44264 tratrbVD 44272 ssralv2VD 44277 sbcim2gVD 44286 sbcbiVD 44287 relopabVD 44312 19.41rgVD 44313 ax6e2eqVD 44318 ax6e2ndeqVD 44320 vk15.4jVD 44325 con3ALTVD 44327 |
Copyright terms: Public domain | W3C validator |