![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp2d | Structured version Visualization version GIF version |
Description: A double modus ponens deduction. Deduction associated with mp2 9. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
mp2d.1 | ⊢ (𝜑 → 𝜓) |
mp2d.2 | ⊢ (𝜑 → 𝜒) |
mp2d.3 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mp2d | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mp2d.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | mp2d.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
4 | 2, 3 | mpid 44 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: riotaeqimp 7431 marypha1lem 9502 wemaplem3 9617 xpwdomg 9654 pwfseqlem4 10731 wrdind 14770 wrd2ind 14771 sqrt2irr 16297 coprm 16758 oddprmdvds 16950 cyccom 19243 symggen 19512 efgredlemd 19786 efgredlem 19789 efgred 19790 chcoeffeq 22913 nmoleub2lem3 25167 iscmet3 25346 mulsproplem1 28160 axtgcgrid 28489 axtg5seg 28491 axtgbtwnid 28492 wlk1walk 29675 umgr2wlk 29982 frgrnbnb 30325 friendshipgt3 30430 ismntd 32957 archiexdiv 33170 fedgmullem2 33643 unelsiga 34098 sibfof 34305 bnj1145 34969 derangenlem 35139 irrdiff 37292 l1cvpat 39010 llnexchb2 39826 hdmapglem7 41886 eel11111 44694 dmrelrnrel 45133 climrec 45524 lptre2pt 45561 0ellimcdiv 45570 iccpartlt 47298 |
Copyright terms: Public domain | W3C validator |