| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp2d | Structured version Visualization version GIF version | ||
| Description: A double modus ponens deduction. Deduction associated with mp2 9. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| mp2d.1 | ⊢ (𝜑 → 𝜓) |
| mp2d.2 | ⊢ (𝜑 → 𝜒) |
| mp2d.3 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mp2d | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mp2d.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | mp2d.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 4 | 2, 3 | mpid 44 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: riotaeqimp 7329 marypha1lem 9317 wemaplem3 9434 xpwdomg 9471 pwfseqlem4 10550 wrdind 14626 wrd2ind 14627 sqrt2irr 16155 coprm 16619 oddprmdvds 16812 cyccom 19113 symggen 19380 efgredlemd 19654 efgredlem 19657 efgred 19658 chcoeffeq 22799 nmoleub2lem3 25040 iscmet3 25218 mulsproplem1 28053 axtgcgrid 28439 axtg5seg 28441 axtgbtwnid 28442 wlk1walk 29615 umgr2wlk 29925 frgrnbnb 30268 friendshipgt3 30373 ismntd 32960 archiexdiv 33154 fedgmullem2 33638 unelsiga 34142 sibfof 34348 bnj1145 35000 derangenlem 35203 irrdiff 37359 l1cvpat 39092 llnexchb2 39907 hdmapglem7 41967 eel11111 44754 dmrelrnrel 45262 climrec 45642 lptre2pt 45677 0ellimcdiv 45686 iccpartlt 47454 cycl3grtri 47977 |
| Copyright terms: Public domain | W3C validator |