![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp2d | Structured version Visualization version GIF version |
Description: A double modus ponens deduction. Deduction associated with mp2 9. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
mp2d.1 | ⊢ (𝜑 → 𝜓) |
mp2d.2 | ⊢ (𝜑 → 𝜒) |
mp2d.3 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mp2d | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mp2d.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | mp2d.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
4 | 2, 3 | mpid 44 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: riotaeqimp 7413 marypha1lem 9470 wemaplem3 9585 xpwdomg 9622 pwfseqlem4 10699 wrdind 14756 wrd2ind 14757 sqrt2irr 16281 coprm 16744 oddprmdvds 16936 cyccom 19233 symggen 19502 efgredlemd 19776 efgredlem 19779 efgred 19780 chcoeffeq 22907 nmoleub2lem3 25161 iscmet3 25340 mulsproplem1 28156 axtgcgrid 28485 axtg5seg 28487 axtgbtwnid 28488 wlk1walk 29671 umgr2wlk 29978 frgrnbnb 30321 friendshipgt3 30426 ismntd 32958 archiexdiv 33179 fedgmullem2 33657 unelsiga 34114 sibfof 34321 bnj1145 34985 derangenlem 35155 irrdiff 37308 l1cvpat 39035 llnexchb2 39851 hdmapglem7 41911 eel11111 44720 dmrelrnrel 45168 climrec 45558 lptre2pt 45595 0ellimcdiv 45604 iccpartlt 47348 |
Copyright terms: Public domain | W3C validator |