| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp2d | Structured version Visualization version GIF version | ||
| Description: A double modus ponens deduction. Deduction associated with mp2 9. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| mp2d.1 | ⊢ (𝜑 → 𝜓) |
| mp2d.2 | ⊢ (𝜑 → 𝜒) |
| mp2d.3 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mp2d | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mp2d.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | mp2d.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 4 | 2, 3 | mpid 44 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: riotaeqimp 7335 marypha1lem 9324 wemaplem3 9441 xpwdomg 9478 pwfseqlem4 10560 wrdind 14631 wrd2ind 14632 sqrt2irr 16160 coprm 16624 oddprmdvds 16817 cyccom 19117 symggen 19384 efgredlemd 19658 efgredlem 19661 efgred 19662 chcoeffeq 22802 nmoleub2lem3 25043 iscmet3 25221 mulsproplem1 28056 axtgcgrid 28442 axtg5seg 28444 axtgbtwnid 28445 wlk1walk 29619 umgr2wlk 29929 frgrnbnb 30275 friendshipgt3 30380 ismntd 32972 archiexdiv 33166 fedgmullem2 33664 unelsiga 34168 sibfof 34374 bnj1145 35026 derangenlem 35236 irrdiff 37391 l1cvpat 39173 llnexchb2 39988 hdmapglem7 42048 eel11111 44839 dmrelrnrel 45347 climrec 45727 lptre2pt 45762 0ellimcdiv 45771 iccpartlt 47548 cycl3grtri 48071 |
| Copyright terms: Public domain | W3C validator |