Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp2d | Structured version Visualization version GIF version |
Description: A double modus ponens deduction. Deduction associated with mp2 9. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
mp2d.1 | ⊢ (𝜑 → 𝜓) |
mp2d.2 | ⊢ (𝜑 → 𝜒) |
mp2d.3 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mp2d | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mp2d.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | mp2d.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
4 | 2, 3 | mpid 44 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: riotaeqimp 7239 marypha1lem 9122 wemaplem3 9237 xpwdomg 9274 wrdind 14363 wrd2ind 14364 sqrt2irr 15886 coprm 16344 oddprmdvds 16532 cyccom 18737 symggen 18993 efgredlemd 19265 efgredlem 19268 efgred 19269 chcoeffeq 21943 nmoleub2lem3 24184 iscmet3 24362 axtgcgrid 26728 axtg5seg 26730 axtgbtwnid 26731 wlk1walk 27908 umgr2wlk 28215 frgrnbnb 28558 friendshipgt3 28663 ismntd 31164 archiexdiv 31346 fedgmullem2 31613 unelsiga 32002 sibfof 32207 bnj1145 32873 derangenlem 33033 irrdiff 35424 l1cvpat 36995 llnexchb2 37810 hdmapglem7 39870 eel11111 42232 dmrelrnrel 42654 climrec 43034 lptre2pt 43071 0ellimcdiv 43080 iccpartlt 44764 |
Copyright terms: Public domain | W3C validator |