![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp2d | Structured version Visualization version GIF version |
Description: A double modus ponens deduction. Deduction associated with mp2 9. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
mp2d.1 | ⊢ (𝜑 → 𝜓) |
mp2d.2 | ⊢ (𝜑 → 𝜒) |
mp2d.3 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mp2d | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mp2d.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | mp2d.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
4 | 2, 3 | mpid 44 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: riotaeqimp 6894 marypha1lem 8614 wemaplem3 8729 xpwdomg 8766 wrdind 13819 wrdindOLD 13820 wrd2ind 13821 wrd2indOLD 13822 sqrt2irr 15359 coprm 15801 oddprmdvds 15985 symggen 18247 efgredlemd 18516 efgredlem 18519 efgredlemOLD 18520 efgred 18521 chcoeffeq 21068 nmoleub2lem3 23291 iscmet3 23468 axtgcgrid 25782 axtg5seg 25784 axtgbtwnid 25785 wlk1walk 26943 umgr2wlk 27285 frgrnbnb 27670 friendshipgt3 27809 archiexdiv 30285 unelsiga 30738 sibfof 30943 bnj1145 31603 derangenlem 31695 l1cvpat 35128 llnexchb2 35943 hdmapglem7 38003 eel11111 39776 dmrelrnrel 40224 climrec 40628 lptre2pt 40665 0ellimcdiv 40674 iccpartlt 42246 |
Copyright terms: Public domain | W3C validator |