![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp2d | Structured version Visualization version GIF version |
Description: A double modus ponens deduction. Deduction associated with mp2 9. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
mp2d.1 | ⊢ (𝜑 → 𝜓) |
mp2d.2 | ⊢ (𝜑 → 𝜒) |
mp2d.3 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mp2d | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mp2d.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | mp2d.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
4 | 2, 3 | mpid 44 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: riotaeqimp 7400 marypha1lem 9456 wemaplem3 9571 xpwdomg 9608 wrdind 14704 wrd2ind 14705 sqrt2irr 16225 coprm 16681 oddprmdvds 16871 cyccom 19162 symggen 19429 efgredlemd 19703 efgredlem 19706 efgred 19707 chcoeffeq 22818 nmoleub2lem3 25072 iscmet3 25251 mulsproplem1 28050 axtgcgrid 28323 axtg5seg 28325 axtgbtwnid 28326 wlk1walk 29509 umgr2wlk 29816 frgrnbnb 30159 friendshipgt3 30264 ismntd 32768 archiexdiv 32955 fedgmullem2 33398 unelsiga 33823 sibfof 34030 bnj1145 34694 derangenlem 34851 irrdiff 36875 l1cvpat 38595 llnexchb2 39411 hdmapglem7 41471 eel11111 44227 dmrelrnrel 44663 climrec 45054 lptre2pt 45091 0ellimcdiv 45100 iccpartlt 46827 |
Copyright terms: Public domain | W3C validator |