| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp2d | Structured version Visualization version GIF version | ||
| Description: A double modus ponens deduction. Deduction associated with mp2 9. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| mp2d.1 | ⊢ (𝜑 → 𝜓) |
| mp2d.2 | ⊢ (𝜑 → 𝜒) |
| mp2d.3 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mp2d | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mp2d.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | mp2d.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 4 | 2, 3 | mpid 44 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: riotaeqimp 7370 marypha1lem 9384 wemaplem3 9501 xpwdomg 9538 pwfseqlem4 10615 wrdind 14687 wrd2ind 14688 sqrt2irr 16217 coprm 16681 oddprmdvds 16874 cyccom 19135 symggen 19400 efgredlemd 19674 efgredlem 19677 efgred 19678 chcoeffeq 22773 nmoleub2lem3 25015 iscmet3 25193 mulsproplem1 28019 axtgcgrid 28390 axtg5seg 28392 axtgbtwnid 28393 wlk1walk 29567 umgr2wlk 29879 frgrnbnb 30222 friendshipgt3 30327 ismntd 32910 archiexdiv 33144 fedgmullem2 33626 unelsiga 34124 sibfof 34331 bnj1145 34983 derangenlem 35158 irrdiff 37314 l1cvpat 39047 llnexchb2 39863 hdmapglem7 41923 eel11111 44712 dmrelrnrel 45220 climrec 45601 lptre2pt 45638 0ellimcdiv 45647 iccpartlt 47425 cycl3grtri 47946 |
| Copyright terms: Public domain | W3C validator |