Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp2d | Structured version Visualization version GIF version |
Description: A double modus ponens deduction. Deduction associated with mp2 9. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
mp2d.1 | ⊢ (𝜑 → 𝜓) |
mp2d.2 | ⊢ (𝜑 → 𝜒) |
mp2d.3 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mp2d | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mp2d.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | mp2d.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
4 | 2, 3 | mpid 44 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: riotaeqimp 7259 marypha1lem 9192 wemaplem3 9307 xpwdomg 9344 wrdind 14435 wrd2ind 14436 sqrt2irr 15958 coprm 16416 oddprmdvds 16604 cyccom 18822 symggen 19078 efgredlemd 19350 efgredlem 19353 efgred 19354 chcoeffeq 22035 nmoleub2lem3 24278 iscmet3 24457 axtgcgrid 26824 axtg5seg 26826 axtgbtwnid 26827 wlk1walk 28006 umgr2wlk 28314 frgrnbnb 28657 friendshipgt3 28762 ismntd 31262 archiexdiv 31444 fedgmullem2 31711 unelsiga 32102 sibfof 32307 bnj1145 32973 derangenlem 33133 irrdiff 35497 l1cvpat 37068 llnexchb2 37883 hdmapglem7 39943 eel11111 42343 dmrelrnrel 42765 climrec 43144 lptre2pt 43181 0ellimcdiv 43190 iccpartlt 44876 |
Copyright terms: Public domain | W3C validator |