![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp2d | Structured version Visualization version GIF version |
Description: A double modus ponens deduction. Deduction associated with mp2 9. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
mp2d.1 | ⊢ (𝜑 → 𝜓) |
mp2d.2 | ⊢ (𝜑 → 𝜒) |
mp2d.3 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mp2d | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mp2d.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | mp2d.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
4 | 2, 3 | mpid 44 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: riotaeqimp 7396 marypha1lem 9432 wemaplem3 9547 xpwdomg 9584 wrdind 14678 wrd2ind 14679 sqrt2irr 16198 coprm 16654 oddprmdvds 16842 cyccom 19120 symggen 19381 efgredlemd 19655 efgredlem 19658 efgred 19659 chcoeffeq 22610 nmoleub2lem3 24864 iscmet3 25043 mulsproplem1 27809 axtgcgrid 27979 axtg5seg 27981 axtgbtwnid 27982 wlk1walk 29161 umgr2wlk 29468 frgrnbnb 29811 friendshipgt3 29916 ismntd 32419 archiexdiv 32604 fedgmullem2 33001 unelsiga 33428 sibfof 33635 bnj1145 34300 derangenlem 34458 irrdiff 36512 l1cvpat 38229 llnexchb2 39045 hdmapglem7 41105 eel11111 43788 dmrelrnrel 44225 climrec 44619 lptre2pt 44656 0ellimcdiv 44665 iccpartlt 46392 |
Copyright terms: Public domain | W3C validator |