| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp2d | Structured version Visualization version GIF version | ||
| Description: A double modus ponens deduction. Deduction associated with mp2 9. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| mp2d.1 | ⊢ (𝜑 → 𝜓) |
| mp2d.2 | ⊢ (𝜑 → 𝜒) |
| mp2d.3 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mp2d | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mp2d.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | mp2d.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 4 | 2, 3 | mpid 44 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: riotaeqimp 7336 marypha1lem 9342 wemaplem3 9459 xpwdomg 9496 pwfseqlem4 10575 wrdind 14646 wrd2ind 14647 sqrt2irr 16176 coprm 16640 oddprmdvds 16833 cyccom 19100 symggen 19367 efgredlemd 19641 efgredlem 19644 efgred 19645 chcoeffeq 22789 nmoleub2lem3 25031 iscmet3 25209 mulsproplem1 28042 axtgcgrid 28426 axtg5seg 28428 axtgbtwnid 28429 wlk1walk 29602 umgr2wlk 29912 frgrnbnb 30255 friendshipgt3 30360 ismntd 32939 archiexdiv 33142 fedgmullem2 33602 unelsiga 34100 sibfof 34307 bnj1145 34959 derangenlem 35143 irrdiff 37299 l1cvpat 39032 llnexchb2 39848 hdmapglem7 41908 eel11111 44696 dmrelrnrel 45204 climrec 45585 lptre2pt 45622 0ellimcdiv 45631 iccpartlt 47409 cycl3grtri 47932 |
| Copyright terms: Public domain | W3C validator |