| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp2d | Structured version Visualization version GIF version | ||
| Description: A double modus ponens deduction. Deduction associated with mp2 9. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| mp2d.1 | ⊢ (𝜑 → 𝜓) |
| mp2d.2 | ⊢ (𝜑 → 𝜒) |
| mp2d.3 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mp2d | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mp2d.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | mp2d.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 4 | 2, 3 | mpid 44 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: riotaeqimp 7373 marypha1lem 9391 wemaplem3 9508 xpwdomg 9545 pwfseqlem4 10622 wrdind 14694 wrd2ind 14695 sqrt2irr 16224 coprm 16688 oddprmdvds 16881 cyccom 19142 symggen 19407 efgredlemd 19681 efgredlem 19684 efgred 19685 chcoeffeq 22780 nmoleub2lem3 25022 iscmet3 25200 mulsproplem1 28026 axtgcgrid 28397 axtg5seg 28399 axtgbtwnid 28400 wlk1walk 29574 umgr2wlk 29886 frgrnbnb 30229 friendshipgt3 30334 ismntd 32917 archiexdiv 33151 fedgmullem2 33633 unelsiga 34131 sibfof 34338 bnj1145 34990 derangenlem 35165 irrdiff 37321 l1cvpat 39054 llnexchb2 39870 hdmapglem7 41930 eel11111 44719 dmrelrnrel 45227 climrec 45608 lptre2pt 45645 0ellimcdiv 45654 iccpartlt 47429 cycl3grtri 47950 |
| Copyright terms: Public domain | W3C validator |