| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp2d | Structured version Visualization version GIF version | ||
| Description: A double modus ponens deduction. Deduction associated with mp2 9. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| mp2d.1 | ⊢ (𝜑 → 𝜓) |
| mp2d.2 | ⊢ (𝜑 → 𝜒) |
| mp2d.3 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mp2d | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mp2d.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | mp2d.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 4 | 2, 3 | mpid 44 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: riotaeqimp 7388 marypha1lem 9445 wemaplem3 9562 xpwdomg 9599 pwfseqlem4 10676 wrdind 14740 wrd2ind 14741 sqrt2irr 16267 coprm 16730 oddprmdvds 16923 cyccom 19186 symggen 19451 efgredlemd 19725 efgredlem 19728 efgred 19729 chcoeffeq 22824 nmoleub2lem3 25066 iscmet3 25245 mulsproplem1 28071 axtgcgrid 28442 axtg5seg 28444 axtgbtwnid 28445 wlk1walk 29619 umgr2wlk 29931 frgrnbnb 30274 friendshipgt3 30379 ismntd 32964 archiexdiv 33188 fedgmullem2 33670 unelsiga 34165 sibfof 34372 bnj1145 35024 derangenlem 35193 irrdiff 37344 l1cvpat 39072 llnexchb2 39888 hdmapglem7 41948 eel11111 44747 dmrelrnrel 45250 climrec 45632 lptre2pt 45669 0ellimcdiv 45678 iccpartlt 47438 cycl3grtri 47959 |
| Copyright terms: Public domain | W3C validator |