Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp2d | Structured version Visualization version GIF version |
Description: A double modus ponens deduction. Deduction associated with mp2 9. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
mp2d.1 | ⊢ (𝜑 → 𝜓) |
mp2d.2 | ⊢ (𝜑 → 𝜒) |
mp2d.3 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mp2d | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mp2d.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | mp2d.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
4 | 2, 3 | mpid 44 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: riotaeqimp 7325 marypha1lem 9295 wemaplem3 9410 xpwdomg 9447 wrdind 14534 wrd2ind 14535 sqrt2irr 16058 coprm 16514 oddprmdvds 16702 cyccom 18919 symggen 19175 efgredlemd 19446 efgredlem 19449 efgred 19450 chcoeffeq 22141 nmoleub2lem3 24384 iscmet3 24563 axtgcgrid 27113 axtg5seg 27115 axtgbtwnid 27116 wlk1walk 28295 umgr2wlk 28602 frgrnbnb 28945 friendshipgt3 29050 ismntd 31547 archiexdiv 31729 fedgmullem2 32007 unelsiga 32398 sibfof 32605 bnj1145 33270 derangenlem 33430 irrdiff 35651 l1cvpat 37370 llnexchb2 38186 hdmapglem7 40246 eel11111 42714 dmrelrnrel 43143 climrec 43530 lptre2pt 43567 0ellimcdiv 43576 iccpartlt 45292 |
Copyright terms: Public domain | W3C validator |