| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl113anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl113anc.6 | ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
| Ref | Expression |
|---|---|
| syl113anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | 3, 4, 5 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏 ∧ 𝜂)) |
| 7 | syl113anc.6 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
| 8 | 1, 2, 6, 7 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl123anc 1389 syl213anc 1391 hash7g 14411 pythagtriplem18 16762 initoeu2 17941 psgnunilem1 19390 mulmarep1gsum1 22476 mulmarep1gsum2 22477 smadiadetlem4 22572 cramerimplem2 22587 cramerlem2 22591 cramer 22594 cnhaus 23257 dishaus 23285 ordthauslem 23286 pthaus 23541 txhaus 23550 xkohaus 23556 regr1lem 23642 methaus 24424 metnrmlem3 24766 nosupres 27635 nosupbnd1lem1 27636 nosupbnd2 27644 noinfres 27650 noinfbnd1lem1 27651 iscgrad 28774 f1otrge 28835 axpaschlem 28903 wwlksnwwlksnon 29878 n4cyclfrgr 30253 br8d 32571 lt2addrd 32707 xlt2addrd 32715 br8 35728 br4 35730 btwnxfr 36029 lineext 36049 brsegle 36081 brsegle2 36082 lfl0 39043 lfladd 39044 lflsub 39045 lflmul 39046 lflnegcl 39053 lflvscl 39055 lkrlss 39073 3dimlem3 39440 3dimlem4 39443 3dim3 39448 2llnm3N 39548 2lplnja 39598 4atex 40055 4atex3 40060 trlval4 40167 cdleme7c 40224 cdleme7d 40225 cdleme7ga 40227 cdleme21h 40313 cdleme21i 40314 cdleme21j 40315 cdleme21 40316 cdleme32d 40423 cdleme32f 40425 cdleme35h2 40436 cdleme38m 40442 cdleme40m 40446 cdlemg8 40610 cdlemg11a 40616 cdlemg10a 40619 cdlemg12b 40623 cdlemg12d 40625 cdlemg12f 40627 cdlemg12g 40628 cdlemg15a 40634 cdlemg16 40636 cdlemg16z 40638 cdlemg18a 40657 cdlemg24 40667 cdlemg29 40684 cdlemg33b 40686 cdlemg38 40694 cdlemg39 40695 cdlemg40 40696 cdlemg44b 40711 cdlemj2 40801 cdlemk7 40827 cdlemk12 40829 cdlemk12u 40851 cdlemk32 40876 cdlemk25-3 40883 cdlemk34 40889 cdlemkid3N 40912 cdlemkid4 40913 cdlemk11t 40925 cdlemk53 40936 cdlemk55b 40939 cdleml3N 40957 hdmapln1 41885 tfsconcatrev 43321 isubgr3stgrlem6 47956 sepfsepc 48913 |
| Copyright terms: Public domain | W3C validator |