| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl113anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl113anc.6 | ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
| Ref | Expression |
|---|---|
| syl113anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | 3, 4, 5 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏 ∧ 𝜂)) |
| 7 | syl113anc.6 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
| 8 | 1, 2, 6, 7 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl123anc 1389 syl213anc 1391 hash7g 14395 pythagtriplem18 16746 initoeu2 17925 psgnunilem1 19407 mulmarep1gsum1 22489 mulmarep1gsum2 22490 smadiadetlem4 22585 cramerimplem2 22600 cramerlem2 22604 cramer 22607 cnhaus 23270 dishaus 23298 ordthauslem 23299 pthaus 23554 txhaus 23563 xkohaus 23569 regr1lem 23655 methaus 24436 metnrmlem3 24778 nosupres 27647 nosupbnd1lem1 27648 nosupbnd2 27656 noinfres 27662 noinfbnd1lem1 27663 iscgrad 28790 f1otrge 28851 axpaschlem 28920 wwlksnwwlksnon 29895 n4cyclfrgr 30273 br8d 32593 lt2addrd 32738 xlt2addrd 32746 br8 35821 br4 35823 btwnxfr 36121 lineext 36141 brsegle 36173 brsegle2 36174 lfl0 39184 lfladd 39185 lflsub 39186 lflmul 39187 lflnegcl 39194 lflvscl 39196 lkrlss 39214 3dimlem3 39580 3dimlem4 39583 3dim3 39588 2llnm3N 39688 2lplnja 39738 4atex 40195 4atex3 40200 trlval4 40307 cdleme7c 40364 cdleme7d 40365 cdleme7ga 40367 cdleme21h 40453 cdleme21i 40454 cdleme21j 40455 cdleme21 40456 cdleme32d 40563 cdleme32f 40565 cdleme35h2 40576 cdleme38m 40582 cdleme40m 40586 cdlemg8 40750 cdlemg11a 40756 cdlemg10a 40759 cdlemg12b 40763 cdlemg12d 40765 cdlemg12f 40767 cdlemg12g 40768 cdlemg15a 40774 cdlemg16 40776 cdlemg16z 40778 cdlemg18a 40797 cdlemg24 40807 cdlemg29 40824 cdlemg33b 40826 cdlemg38 40834 cdlemg39 40835 cdlemg40 40836 cdlemg44b 40851 cdlemj2 40941 cdlemk7 40967 cdlemk12 40969 cdlemk12u 40991 cdlemk32 41016 cdlemk25-3 41023 cdlemk34 41029 cdlemkid3N 41052 cdlemkid4 41053 cdlemk11t 41065 cdlemk53 41076 cdlemk55b 41079 cdleml3N 41097 hdmapln1 42025 tfsconcatrev 43465 isubgr3stgrlem6 48095 sepfsepc 49052 |
| Copyright terms: Public domain | W3C validator |