| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl113anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl113anc.6 | ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
| Ref | Expression |
|---|---|
| syl113anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | 3, 4, 5 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏 ∧ 𝜂)) |
| 7 | syl113anc.6 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
| 8 | 1, 2, 6, 7 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl123anc 1389 syl213anc 1391 hash7g 14390 pythagtriplem18 16741 initoeu2 17920 psgnunilem1 19403 mulmarep1gsum1 22486 mulmarep1gsum2 22487 smadiadetlem4 22582 cramerimplem2 22597 cramerlem2 22601 cramer 22604 cnhaus 23267 dishaus 23295 ordthauslem 23296 pthaus 23551 txhaus 23560 xkohaus 23566 regr1lem 23652 methaus 24433 metnrmlem3 24775 nosupres 27644 nosupbnd1lem1 27645 nosupbnd2 27653 noinfres 27659 noinfbnd1lem1 27660 iscgrad 28787 f1otrge 28848 axpaschlem 28916 wwlksnwwlksnon 29891 n4cyclfrgr 30266 br8d 32586 lt2addrd 32729 xlt2addrd 32737 br8 35788 br4 35790 btwnxfr 36089 lineext 36109 brsegle 36141 brsegle2 36142 lfl0 39103 lfladd 39104 lflsub 39105 lflmul 39106 lflnegcl 39113 lflvscl 39115 lkrlss 39133 3dimlem3 39499 3dimlem4 39502 3dim3 39507 2llnm3N 39607 2lplnja 39657 4atex 40114 4atex3 40119 trlval4 40226 cdleme7c 40283 cdleme7d 40284 cdleme7ga 40286 cdleme21h 40372 cdleme21i 40373 cdleme21j 40374 cdleme21 40375 cdleme32d 40482 cdleme32f 40484 cdleme35h2 40495 cdleme38m 40501 cdleme40m 40505 cdlemg8 40669 cdlemg11a 40675 cdlemg10a 40678 cdlemg12b 40682 cdlemg12d 40684 cdlemg12f 40686 cdlemg12g 40687 cdlemg15a 40693 cdlemg16 40695 cdlemg16z 40697 cdlemg18a 40716 cdlemg24 40726 cdlemg29 40743 cdlemg33b 40745 cdlemg38 40753 cdlemg39 40754 cdlemg40 40755 cdlemg44b 40770 cdlemj2 40860 cdlemk7 40886 cdlemk12 40888 cdlemk12u 40910 cdlemk32 40935 cdlemk25-3 40942 cdlemk34 40948 cdlemkid3N 40971 cdlemkid4 40972 cdlemk11t 40984 cdlemk53 40995 cdlemk55b 40998 cdleml3N 41016 hdmapln1 41944 tfsconcatrev 43380 isubgr3stgrlem6 48001 sepfsepc 48958 |
| Copyright terms: Public domain | W3C validator |