![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl113anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl113anc.6 | ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
Ref | Expression |
---|---|
syl113anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | 3, 4, 5 | 3jca 1127 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏 ∧ 𝜂)) |
7 | syl113anc.6 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
8 | 1, 2, 6, 7 | syl3anc 1370 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: syl123anc 1386 syl213anc 1388 hash7g 14522 pythagtriplem18 16866 initoeu2 18070 psgnunilem1 19526 mulmarep1gsum1 22595 mulmarep1gsum2 22596 smadiadetlem4 22691 cramerimplem2 22706 cramerlem2 22710 cramer 22713 cnhaus 23378 dishaus 23406 ordthauslem 23407 pthaus 23662 txhaus 23671 xkohaus 23677 regr1lem 23763 methaus 24549 metnrmlem3 24897 nosupres 27767 nosupbnd1lem1 27768 nosupbnd2 27776 noinfres 27782 noinfbnd1lem1 27783 iscgrad 28834 f1otrge 28895 axpaschlem 28970 wwlksnwwlksnon 29945 n4cyclfrgr 30320 br8d 32630 lt2addrd 32762 xlt2addrd 32769 br8 35736 br4 35738 btwnxfr 36038 lineext 36058 brsegle 36090 brsegle2 36091 lfl0 39047 lfladd 39048 lflsub 39049 lflmul 39050 lflnegcl 39057 lflvscl 39059 lkrlss 39077 3dimlem3 39444 3dimlem4 39447 3dim3 39452 2llnm3N 39552 2lplnja 39602 4atex 40059 4atex3 40064 trlval4 40171 cdleme7c 40228 cdleme7d 40229 cdleme7ga 40231 cdleme21h 40317 cdleme21i 40318 cdleme21j 40319 cdleme21 40320 cdleme32d 40427 cdleme32f 40429 cdleme35h2 40440 cdleme38m 40446 cdleme40m 40450 cdlemg8 40614 cdlemg11a 40620 cdlemg10a 40623 cdlemg12b 40627 cdlemg12d 40629 cdlemg12f 40631 cdlemg12g 40632 cdlemg15a 40638 cdlemg16 40640 cdlemg16z 40642 cdlemg18a 40661 cdlemg24 40671 cdlemg29 40688 cdlemg33b 40690 cdlemg38 40698 cdlemg39 40699 cdlemg40 40700 cdlemg44b 40715 cdlemj2 40805 cdlemk7 40831 cdlemk12 40833 cdlemk12u 40855 cdlemk32 40880 cdlemk25-3 40887 cdlemk34 40893 cdlemkid3N 40916 cdlemkid4 40917 cdlemk11t 40929 cdlemk53 40940 cdlemk55b 40943 cdleml3N 40961 hdmapln1 41889 tfsconcatrev 43338 isubgr3stgrlem6 47874 sepfsepc 48724 |
Copyright terms: Public domain | W3C validator |