Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl113anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl113anc.6 | ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
Ref | Expression |
---|---|
syl113anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | 3, 4, 5 | 3jca 1127 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏 ∧ 𝜂)) |
7 | syl113anc.6 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
8 | 1, 2, 6, 7 | syl3anc 1370 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: syl123anc 1386 syl213anc 1388 pythagtriplem18 16542 initoeu2 17740 psgnunilem1 19110 mulmarep1gsum1 21731 mulmarep1gsum2 21732 smadiadetlem4 21827 cramerimplem2 21842 cramerlem2 21846 cramer 21849 cnhaus 22514 dishaus 22542 ordthauslem 22543 pthaus 22798 txhaus 22807 xkohaus 22813 regr1lem 22899 methaus 23685 metnrmlem3 24033 iscgrad 27181 f1otrge 27242 axpaschlem 27317 wwlksnwwlksnon 28289 n4cyclfrgr 28664 br8d 30959 lt2addrd 31083 xlt2addrd 31090 br8 33732 br4 33734 nosupres 33919 nosupbnd1lem1 33920 nosupbnd2 33928 noinfres 33934 noinfbnd1lem1 33935 btwnxfr 34367 lineext 34387 brsegle 34419 brsegle2 34420 lfl0 37086 lfladd 37087 lflsub 37088 lflmul 37089 lflnegcl 37096 lflvscl 37098 lkrlss 37116 3dimlem3 37482 3dimlem4 37485 3dim3 37490 2llnm3N 37590 2lplnja 37640 4atex 38097 4atex3 38102 trlval4 38209 cdleme7c 38266 cdleme7d 38267 cdleme7ga 38269 cdleme21h 38355 cdleme21i 38356 cdleme21j 38357 cdleme21 38358 cdleme32d 38465 cdleme32f 38467 cdleme35h2 38478 cdleme38m 38484 cdleme40m 38488 cdlemg8 38652 cdlemg11a 38658 cdlemg10a 38661 cdlemg12b 38665 cdlemg12d 38667 cdlemg12f 38669 cdlemg12g 38670 cdlemg15a 38676 cdlemg16 38678 cdlemg16z 38680 cdlemg18a 38699 cdlemg24 38709 cdlemg29 38726 cdlemg33b 38728 cdlemg38 38736 cdlemg39 38737 cdlemg40 38738 cdlemg44b 38753 cdlemj2 38843 cdlemk7 38869 cdlemk12 38871 cdlemk12u 38893 cdlemk32 38918 cdlemk25-3 38925 cdlemk34 38931 cdlemkid3N 38954 cdlemkid4 38955 cdlemk11t 38967 cdlemk53 38978 cdlemk55b 38981 cdleml3N 38999 hdmapln1 39927 sepfsepc 46232 |
Copyright terms: Public domain | W3C validator |