Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl113anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl113anc.6 | ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
Ref | Expression |
---|---|
syl113anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | 3, 4, 5 | 3jca 1126 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏 ∧ 𝜂)) |
7 | syl113anc.6 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
8 | 1, 2, 6, 7 | syl3anc 1369 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: syl123anc 1385 syl213anc 1387 pythagtriplem18 16461 initoeu2 17647 psgnunilem1 19016 mulmarep1gsum1 21630 mulmarep1gsum2 21631 smadiadetlem4 21726 cramerimplem2 21741 cramerlem2 21745 cramer 21748 cnhaus 22413 dishaus 22441 ordthauslem 22442 pthaus 22697 txhaus 22706 xkohaus 22712 regr1lem 22798 methaus 23582 metnrmlem3 23930 iscgrad 27076 f1otrge 27137 axpaschlem 27211 wwlksnwwlksnon 28181 n4cyclfrgr 28556 br8d 30851 lt2addrd 30976 xlt2addrd 30983 br8 33629 br4 33631 nosupres 33837 nosupbnd1lem1 33838 nosupbnd2 33846 noinfres 33852 noinfbnd1lem1 33853 btwnxfr 34285 lineext 34305 brsegle 34337 brsegle2 34338 lfl0 37006 lfladd 37007 lflsub 37008 lflmul 37009 lflnegcl 37016 lflvscl 37018 lkrlss 37036 3dimlem3 37402 3dimlem4 37405 3dim3 37410 2llnm3N 37510 2lplnja 37560 4atex 38017 4atex3 38022 trlval4 38129 cdleme7c 38186 cdleme7d 38187 cdleme7ga 38189 cdleme21h 38275 cdleme21i 38276 cdleme21j 38277 cdleme21 38278 cdleme32d 38385 cdleme32f 38387 cdleme35h2 38398 cdleme38m 38404 cdleme40m 38408 cdlemg8 38572 cdlemg11a 38578 cdlemg10a 38581 cdlemg12b 38585 cdlemg12d 38587 cdlemg12f 38589 cdlemg12g 38590 cdlemg15a 38596 cdlemg16 38598 cdlemg16z 38600 cdlemg18a 38619 cdlemg24 38629 cdlemg29 38646 cdlemg33b 38648 cdlemg38 38656 cdlemg39 38657 cdlemg40 38658 cdlemg44b 38673 cdlemj2 38763 cdlemk7 38789 cdlemk12 38791 cdlemk12u 38813 cdlemk32 38838 cdlemk25-3 38845 cdlemk34 38851 cdlemkid3N 38874 cdlemkid4 38875 cdlemk11t 38887 cdlemk53 38898 cdlemk55b 38901 cdleml3N 38919 hdmapln1 39847 sepfsepc 46109 |
Copyright terms: Public domain | W3C validator |