| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl113anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl113anc.6 | ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
| Ref | Expression |
|---|---|
| syl113anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | 3, 4, 5 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏 ∧ 𝜂)) |
| 7 | syl113anc.6 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
| 8 | 1, 2, 6, 7 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl123anc 1389 syl213anc 1391 hash7g 14504 pythagtriplem18 16852 initoeu2 18029 psgnunilem1 19474 mulmarep1gsum1 22511 mulmarep1gsum2 22512 smadiadetlem4 22607 cramerimplem2 22622 cramerlem2 22626 cramer 22629 cnhaus 23292 dishaus 23320 ordthauslem 23321 pthaus 23576 txhaus 23585 xkohaus 23591 regr1lem 23677 methaus 24459 metnrmlem3 24801 nosupres 27671 nosupbnd1lem1 27672 nosupbnd2 27680 noinfres 27686 noinfbnd1lem1 27687 iscgrad 28790 f1otrge 28851 axpaschlem 28919 wwlksnwwlksnon 29897 n4cyclfrgr 30272 br8d 32590 lt2addrd 32728 xlt2addrd 32736 br8 35773 br4 35775 btwnxfr 36074 lineext 36094 brsegle 36126 brsegle2 36127 lfl0 39083 lfladd 39084 lflsub 39085 lflmul 39086 lflnegcl 39093 lflvscl 39095 lkrlss 39113 3dimlem3 39480 3dimlem4 39483 3dim3 39488 2llnm3N 39588 2lplnja 39638 4atex 40095 4atex3 40100 trlval4 40207 cdleme7c 40264 cdleme7d 40265 cdleme7ga 40267 cdleme21h 40353 cdleme21i 40354 cdleme21j 40355 cdleme21 40356 cdleme32d 40463 cdleme32f 40465 cdleme35h2 40476 cdleme38m 40482 cdleme40m 40486 cdlemg8 40650 cdlemg11a 40656 cdlemg10a 40659 cdlemg12b 40663 cdlemg12d 40665 cdlemg12f 40667 cdlemg12g 40668 cdlemg15a 40674 cdlemg16 40676 cdlemg16z 40678 cdlemg18a 40697 cdlemg24 40707 cdlemg29 40724 cdlemg33b 40726 cdlemg38 40734 cdlemg39 40735 cdlemg40 40736 cdlemg44b 40751 cdlemj2 40841 cdlemk7 40867 cdlemk12 40869 cdlemk12u 40891 cdlemk32 40916 cdlemk25-3 40923 cdlemk34 40929 cdlemkid3N 40952 cdlemkid4 40953 cdlemk11t 40965 cdlemk53 40976 cdlemk55b 40979 cdleml3N 40997 hdmapln1 41925 tfsconcatrev 43372 isubgr3stgrlem6 47983 sepfsepc 48902 |
| Copyright terms: Public domain | W3C validator |