![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl113anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl113anc.6 | ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
Ref | Expression |
---|---|
syl113anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | 3, 4, 5 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏 ∧ 𝜂)) |
7 | syl113anc.6 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
8 | 1, 2, 6, 7 | syl3anc 1371 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: syl123anc 1387 syl213anc 1389 hash7g 14535 pythagtriplem18 16879 initoeu2 18083 psgnunilem1 19535 mulmarep1gsum1 22600 mulmarep1gsum2 22601 smadiadetlem4 22696 cramerimplem2 22711 cramerlem2 22715 cramer 22718 cnhaus 23383 dishaus 23411 ordthauslem 23412 pthaus 23667 txhaus 23676 xkohaus 23682 regr1lem 23768 methaus 24554 metnrmlem3 24902 nosupres 27770 nosupbnd1lem1 27771 nosupbnd2 27779 noinfres 27785 noinfbnd1lem1 27786 iscgrad 28837 f1otrge 28898 axpaschlem 28973 wwlksnwwlksnon 29948 n4cyclfrgr 30323 br8d 32632 lt2addrd 32758 xlt2addrd 32765 br8 35718 br4 35720 btwnxfr 36020 lineext 36040 brsegle 36072 brsegle2 36073 lfl0 39021 lfladd 39022 lflsub 39023 lflmul 39024 lflnegcl 39031 lflvscl 39033 lkrlss 39051 3dimlem3 39418 3dimlem4 39421 3dim3 39426 2llnm3N 39526 2lplnja 39576 4atex 40033 4atex3 40038 trlval4 40145 cdleme7c 40202 cdleme7d 40203 cdleme7ga 40205 cdleme21h 40291 cdleme21i 40292 cdleme21j 40293 cdleme21 40294 cdleme32d 40401 cdleme32f 40403 cdleme35h2 40414 cdleme38m 40420 cdleme40m 40424 cdlemg8 40588 cdlemg11a 40594 cdlemg10a 40597 cdlemg12b 40601 cdlemg12d 40603 cdlemg12f 40605 cdlemg12g 40606 cdlemg15a 40612 cdlemg16 40614 cdlemg16z 40616 cdlemg18a 40635 cdlemg24 40645 cdlemg29 40662 cdlemg33b 40664 cdlemg38 40672 cdlemg39 40673 cdlemg40 40674 cdlemg44b 40689 cdlemj2 40779 cdlemk7 40805 cdlemk12 40807 cdlemk12u 40829 cdlemk32 40854 cdlemk25-3 40861 cdlemk34 40867 cdlemkid3N 40890 cdlemkid4 40891 cdlemk11t 40903 cdlemk53 40914 cdlemk55b 40917 cdleml3N 40935 hdmapln1 41863 tfsconcatrev 43310 sepfsepc 48607 |
Copyright terms: Public domain | W3C validator |