| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl113anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl113anc.6 | ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
| Ref | Expression |
|---|---|
| syl113anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | 3, 4, 5 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏 ∧ 𝜂)) |
| 7 | syl113anc.6 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
| 8 | 1, 2, 6, 7 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl123anc 1389 syl213anc 1391 hash7g 14458 pythagtriplem18 16810 initoeu2 17985 psgnunilem1 19430 mulmarep1gsum1 22467 mulmarep1gsum2 22468 smadiadetlem4 22563 cramerimplem2 22578 cramerlem2 22582 cramer 22585 cnhaus 23248 dishaus 23276 ordthauslem 23277 pthaus 23532 txhaus 23541 xkohaus 23547 regr1lem 23633 methaus 24415 metnrmlem3 24757 nosupres 27626 nosupbnd1lem1 27627 nosupbnd2 27635 noinfres 27641 noinfbnd1lem1 27642 iscgrad 28745 f1otrge 28806 axpaschlem 28874 wwlksnwwlksnon 29852 n4cyclfrgr 30227 br8d 32545 lt2addrd 32681 xlt2addrd 32689 br8 35750 br4 35752 btwnxfr 36051 lineext 36071 brsegle 36103 brsegle2 36104 lfl0 39065 lfladd 39066 lflsub 39067 lflmul 39068 lflnegcl 39075 lflvscl 39077 lkrlss 39095 3dimlem3 39462 3dimlem4 39465 3dim3 39470 2llnm3N 39570 2lplnja 39620 4atex 40077 4atex3 40082 trlval4 40189 cdleme7c 40246 cdleme7d 40247 cdleme7ga 40249 cdleme21h 40335 cdleme21i 40336 cdleme21j 40337 cdleme21 40338 cdleme32d 40445 cdleme32f 40447 cdleme35h2 40458 cdleme38m 40464 cdleme40m 40468 cdlemg8 40632 cdlemg11a 40638 cdlemg10a 40641 cdlemg12b 40645 cdlemg12d 40647 cdlemg12f 40649 cdlemg12g 40650 cdlemg15a 40656 cdlemg16 40658 cdlemg16z 40660 cdlemg18a 40679 cdlemg24 40689 cdlemg29 40706 cdlemg33b 40708 cdlemg38 40716 cdlemg39 40717 cdlemg40 40718 cdlemg44b 40733 cdlemj2 40823 cdlemk7 40849 cdlemk12 40851 cdlemk12u 40873 cdlemk32 40898 cdlemk25-3 40905 cdlemk34 40911 cdlemkid3N 40934 cdlemkid4 40935 cdlemk11t 40947 cdlemk53 40958 cdlemk55b 40961 cdleml3N 40979 hdmapln1 41907 tfsconcatrev 43344 isubgr3stgrlem6 47974 sepfsepc 48920 |
| Copyright terms: Public domain | W3C validator |