| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl113anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl113anc.6 | ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
| Ref | Expression |
|---|---|
| syl113anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | 3, 4, 5 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏 ∧ 𝜂)) |
| 7 | syl113anc.6 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
| 8 | 1, 2, 6, 7 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl123anc 1389 syl213anc 1391 hash7g 14451 pythagtriplem18 16803 initoeu2 17978 psgnunilem1 19423 mulmarep1gsum1 22460 mulmarep1gsum2 22461 smadiadetlem4 22556 cramerimplem2 22571 cramerlem2 22575 cramer 22578 cnhaus 23241 dishaus 23269 ordthauslem 23270 pthaus 23525 txhaus 23534 xkohaus 23540 regr1lem 23626 methaus 24408 metnrmlem3 24750 nosupres 27619 nosupbnd1lem1 27620 nosupbnd2 27628 noinfres 27634 noinfbnd1lem1 27635 iscgrad 28738 f1otrge 28799 axpaschlem 28867 wwlksnwwlksnon 29845 n4cyclfrgr 30220 br8d 32538 lt2addrd 32674 xlt2addrd 32682 br8 35743 br4 35745 btwnxfr 36044 lineext 36064 brsegle 36096 brsegle2 36097 lfl0 39058 lfladd 39059 lflsub 39060 lflmul 39061 lflnegcl 39068 lflvscl 39070 lkrlss 39088 3dimlem3 39455 3dimlem4 39458 3dim3 39463 2llnm3N 39563 2lplnja 39613 4atex 40070 4atex3 40075 trlval4 40182 cdleme7c 40239 cdleme7d 40240 cdleme7ga 40242 cdleme21h 40328 cdleme21i 40329 cdleme21j 40330 cdleme21 40331 cdleme32d 40438 cdleme32f 40440 cdleme35h2 40451 cdleme38m 40457 cdleme40m 40461 cdlemg8 40625 cdlemg11a 40631 cdlemg10a 40634 cdlemg12b 40638 cdlemg12d 40640 cdlemg12f 40642 cdlemg12g 40643 cdlemg15a 40649 cdlemg16 40651 cdlemg16z 40653 cdlemg18a 40672 cdlemg24 40682 cdlemg29 40699 cdlemg33b 40701 cdlemg38 40709 cdlemg39 40710 cdlemg40 40711 cdlemg44b 40726 cdlemj2 40816 cdlemk7 40842 cdlemk12 40844 cdlemk12u 40866 cdlemk32 40891 cdlemk25-3 40898 cdlemk34 40904 cdlemkid3N 40927 cdlemkid4 40928 cdlemk11t 40940 cdlemk53 40951 cdlemk55b 40954 cdleml3N 40972 hdmapln1 41900 tfsconcatrev 43337 isubgr3stgrlem6 47970 sepfsepc 48916 |
| Copyright terms: Public domain | W3C validator |