Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl113anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl113anc.6 | ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
Ref | Expression |
---|---|
syl113anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | 3, 4, 5 | 3jca 1127 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏 ∧ 𝜂)) |
7 | syl113anc.6 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
8 | 1, 2, 6, 7 | syl3anc 1370 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: syl123anc 1386 syl213anc 1388 pythagtriplem18 16523 initoeu2 17721 psgnunilem1 19091 mulmarep1gsum1 21712 mulmarep1gsum2 21713 smadiadetlem4 21808 cramerimplem2 21823 cramerlem2 21827 cramer 21830 cnhaus 22495 dishaus 22523 ordthauslem 22524 pthaus 22779 txhaus 22788 xkohaus 22794 regr1lem 22880 methaus 23666 metnrmlem3 24014 iscgrad 27162 f1otrge 27223 axpaschlem 27298 wwlksnwwlksnon 28268 n4cyclfrgr 28643 br8d 30938 lt2addrd 31062 xlt2addrd 31069 br8 33711 br4 33713 nosupres 33898 nosupbnd1lem1 33899 nosupbnd2 33907 noinfres 33913 noinfbnd1lem1 33914 btwnxfr 34346 lineext 34366 brsegle 34398 brsegle2 34399 lfl0 37067 lfladd 37068 lflsub 37069 lflmul 37070 lflnegcl 37077 lflvscl 37079 lkrlss 37097 3dimlem3 37463 3dimlem4 37466 3dim3 37471 2llnm3N 37571 2lplnja 37621 4atex 38078 4atex3 38083 trlval4 38190 cdleme7c 38247 cdleme7d 38248 cdleme7ga 38250 cdleme21h 38336 cdleme21i 38337 cdleme21j 38338 cdleme21 38339 cdleme32d 38446 cdleme32f 38448 cdleme35h2 38459 cdleme38m 38465 cdleme40m 38469 cdlemg8 38633 cdlemg11a 38639 cdlemg10a 38642 cdlemg12b 38646 cdlemg12d 38648 cdlemg12f 38650 cdlemg12g 38651 cdlemg15a 38657 cdlemg16 38659 cdlemg16z 38661 cdlemg18a 38680 cdlemg24 38690 cdlemg29 38707 cdlemg33b 38709 cdlemg38 38717 cdlemg39 38718 cdlemg40 38719 cdlemg44b 38734 cdlemj2 38824 cdlemk7 38850 cdlemk12 38852 cdlemk12u 38874 cdlemk32 38899 cdlemk25-3 38906 cdlemk34 38912 cdlemkid3N 38935 cdlemkid4 38936 cdlemk11t 38948 cdlemk53 38959 cdlemk55b 38962 cdleml3N 38980 hdmapln1 39908 sepfsepc 46182 |
Copyright terms: Public domain | W3C validator |