|   | Mathbox for Alan Sare | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eel0T1 | Structured version Visualization version GIF version | ||
| Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| eel0T1.1 | ⊢ 𝜑 | 
| eel0T1.2 | ⊢ (⊤ → 𝜓) | 
| eel0T1.3 | ⊢ (𝜒 → 𝜃) | 
| eel0T1.4 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | 
| Ref | Expression | 
|---|---|
| eel0T1 | ⊢ (𝜒 → 𝜏) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3anass 1095 | . . 3 ⊢ ((𝜑 ∧ ⊤ ∧ 𝜒) ↔ (𝜑 ∧ (⊤ ∧ 𝜒))) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (⊤ ∧ 𝜒)) → (⊤ ∧ 𝜒)) | |
| 3 | eel0T1.1 | . . . . 5 ⊢ 𝜑 | |
| 4 | 3 | jctl 523 | . . . 4 ⊢ ((⊤ ∧ 𝜒) → (𝜑 ∧ (⊤ ∧ 𝜒))) | 
| 5 | 2, 4 | impbii 209 | . . 3 ⊢ ((𝜑 ∧ (⊤ ∧ 𝜒)) ↔ (⊤ ∧ 𝜒)) | 
| 6 | truan 1551 | . . 3 ⊢ ((⊤ ∧ 𝜒) ↔ 𝜒) | |
| 7 | 1, 5, 6 | 3bitri 297 | . 2 ⊢ ((𝜑 ∧ ⊤ ∧ 𝜒) ↔ 𝜒) | 
| 8 | eel0T1.3 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 9 | eel0T1.2 | . . . 4 ⊢ (⊤ → 𝜓) | |
| 10 | eel0T1.4 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 11 | 9, 10 | syl3an2 1165 | . . 3 ⊢ ((𝜑 ∧ ⊤ ∧ 𝜃) → 𝜏) | 
| 12 | 8, 11 | syl3an3 1166 | . 2 ⊢ ((𝜑 ∧ ⊤ ∧ 𝜒) → 𝜏) | 
| 13 | 7, 12 | sylbir 235 | 1 ⊢ (𝜒 → 𝜏) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ⊤wtru 1541 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |