Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eel0T1 Structured version   Visualization version   GIF version

Theorem eel0T1 42005
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
eel0T1.1 𝜑
eel0T1.2 (⊤ → 𝜓)
eel0T1.3 (𝜒𝜃)
eel0T1.4 ((𝜑𝜓𝜃) → 𝜏)
Assertion
Ref Expression
eel0T1 (𝜒𝜏)

Proof of Theorem eel0T1
StepHypRef Expression
1 3anass 1097 . . 3 ((𝜑 ∧ ⊤ ∧ 𝜒) ↔ (𝜑 ∧ (⊤ ∧ 𝜒)))
2 simpr 488 . . . 4 ((𝜑 ∧ (⊤ ∧ 𝜒)) → (⊤ ∧ 𝜒))
3 eel0T1.1 . . . . 5 𝜑
43jctl 527 . . . 4 ((⊤ ∧ 𝜒) → (𝜑 ∧ (⊤ ∧ 𝜒)))
52, 4impbii 212 . . 3 ((𝜑 ∧ (⊤ ∧ 𝜒)) ↔ (⊤ ∧ 𝜒))
6 truan 1554 . . 3 ((⊤ ∧ 𝜒) ↔ 𝜒)
71, 5, 63bitri 300 . 2 ((𝜑 ∧ ⊤ ∧ 𝜒) ↔ 𝜒)
8 eel0T1.3 . . 3 (𝜒𝜃)
9 eel0T1.2 . . . 4 (⊤ → 𝜓)
10 eel0T1.4 . . . 4 ((𝜑𝜓𝜃) → 𝜏)
119, 10syl3an2 1166 . . 3 ((𝜑 ∧ ⊤ ∧ 𝜃) → 𝜏)
128, 11syl3an3 1167 . 2 ((𝜑 ∧ ⊤ ∧ 𝜒) → 𝜏)
137, 12sylbir 238 1 (𝜒𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089  wtru 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1091  df-tru 1546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator