| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2imc | Structured version Visualization version GIF version | ||
| Description: A commuted version of syl2im 40. Implication-only version of syl2anr 597. (Contributed by BJ, 20-Oct-2021.) |
| Ref | Expression |
|---|---|
| syl2im.1 | ⊢ (𝜑 → 𝜓) |
| syl2im.2 | ⊢ (𝜒 → 𝜃) |
| syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl2imc | ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2im.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 1, 2, 3 | syl2im 40 | . 2 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| 5 | 4 | com12 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: impbid21d 211 nanass 1511 triun 5210 mapfvd 8798 undifixp 8853 rankpwi 9708 rankelb 9709 2cshwcshw 14724 incexclem 15735 sumeven 16290 cygth 21501 cnpco 23175 txkgen 23560 reperflem 24727 lhop1lem 25938 ulmss 26326 2sqreultblem 27379 crctcshwlkn0lem4 29784 numclwwlk1lem2f1 30327 ontgval 36444 bj-dvelimdv1 36865 eel12131 44724 et-sqrtnegnre 46890 2ffzoeq 47337 iccpartgt 47437 bgoldbtbndlem3 47817 gpgprismgr4cycllem7 48111 lincresunit3 48492 |
| Copyright terms: Public domain | W3C validator |