Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2imc | Structured version Visualization version GIF version |
Description: A commuted version of syl2im 40. Implication-only version of syl2anr 597. (Contributed by BJ, 20-Oct-2021.) |
Ref | Expression |
---|---|
syl2im.1 | ⊢ (𝜑 → 𝜓) |
syl2im.2 | ⊢ (𝜒 → 𝜃) |
syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl2imc | ⊢ (𝜒 → (𝜑 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 1, 2, 3 | syl2im 40 | . 2 ⊢ (𝜑 → (𝜒 → 𝜏)) |
5 | 4 | com12 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: impbid21d 210 nanass 1505 triun 5204 mapfvd 8667 undifixp 8722 rankpwi 9581 rankelb 9582 2cshwcshw 14538 incexclem 15548 sumeven 16096 cygth 20779 cnpco 22418 txkgen 22803 reperflem 23981 lhop1lem 25177 ulmss 25556 2sqreultblem 26596 crctcshwlkn0lem4 28178 numclwwlk1lem2f1 28721 ontgval 34620 bj-dvelimdv1 35036 eel12131 42333 2ffzoeq 44820 iccpartgt 44879 bgoldbtbndlem3 45259 lincresunit3 45822 |
Copyright terms: Public domain | W3C validator |