| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2imc | Structured version Visualization version GIF version | ||
| Description: A commuted version of syl2im 40. Implication-only version of syl2anr 597. (Contributed by BJ, 20-Oct-2021.) |
| Ref | Expression |
|---|---|
| syl2im.1 | ⊢ (𝜑 → 𝜓) |
| syl2im.2 | ⊢ (𝜒 → 𝜃) |
| syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl2imc | ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2im.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 1, 2, 3 | syl2im 40 | . 2 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| 5 | 4 | com12 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: impbid21d 211 nanass 1510 triun 5216 mapfvd 8813 undifixp 8868 rankpwi 9738 rankelb 9739 2cshwcshw 14750 incexclem 15761 sumeven 16316 cygth 21496 cnpco 23170 txkgen 23555 reperflem 24723 lhop1lem 25934 ulmss 26322 2sqreultblem 27375 crctcshwlkn0lem4 29776 numclwwlk1lem2f1 30319 ontgval 36404 bj-dvelimdv1 36825 eel12131 44686 et-sqrtnegnre 46855 2ffzoeq 47312 iccpartgt 47412 bgoldbtbndlem3 47792 gpgprismgr4cycllem7 48075 lincresunit3 48454 |
| Copyright terms: Public domain | W3C validator |