![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2imc | Structured version Visualization version GIF version |
Description: A commuted version of syl2im 40. Implication-only version of syl2anr 595. (Contributed by BJ, 20-Oct-2021.) |
Ref | Expression |
---|---|
syl2im.1 | ⊢ (𝜑 → 𝜓) |
syl2im.2 | ⊢ (𝜒 → 𝜃) |
syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl2imc | ⊢ (𝜒 → (𝜑 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 1, 2, 3 | syl2im 40 | . 2 ⊢ (𝜑 → (𝜒 → 𝜏)) |
5 | 4 | com12 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: impbid21d 210 nanass 1506 triun 5279 mapfvd 8875 undifixp 8930 rankpwi 9820 rankelb 9821 2cshwcshw 14780 incexclem 15786 sumeven 16334 cygth 21346 cnpco 22991 txkgen 23376 reperflem 24554 lhop1lem 25765 ulmss 26145 2sqreultblem 27187 crctcshwlkn0lem4 29334 numclwwlk1lem2f1 29877 ontgval 35619 bj-dvelimdv1 36034 eel12131 43776 et-sqrtnegnre 45887 2ffzoeq 46334 iccpartgt 46393 bgoldbtbndlem3 46773 lincresunit3 47249 |
Copyright terms: Public domain | W3C validator |