| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2imc | Structured version Visualization version GIF version | ||
| Description: A commuted version of syl2im 40. Implication-only version of syl2anr 597. (Contributed by BJ, 20-Oct-2021.) |
| Ref | Expression |
|---|---|
| syl2im.1 | ⊢ (𝜑 → 𝜓) |
| syl2im.2 | ⊢ (𝜒 → 𝜃) |
| syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl2imc | ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2im.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 1, 2, 3 | syl2im 40 | . 2 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| 5 | 4 | com12 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: impbid21d 211 nanass 1510 triun 5232 mapfvd 8855 undifixp 8910 rankpwi 9783 rankelb 9784 2cshwcshw 14798 incexclem 15809 sumeven 16364 cygth 21488 cnpco 23161 txkgen 23546 reperflem 24714 lhop1lem 25925 ulmss 26313 2sqreultblem 27366 crctcshwlkn0lem4 29750 numclwwlk1lem2f1 30293 ontgval 36426 bj-dvelimdv1 36847 eel12131 44709 et-sqrtnegnre 46878 2ffzoeq 47332 iccpartgt 47432 bgoldbtbndlem3 47812 gpgprismgr4cycllem7 48095 lincresunit3 48474 |
| Copyright terms: Public domain | W3C validator |