![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2imc | Structured version Visualization version GIF version |
Description: A commuted version of syl2im 40. Implication-only version of syl2anr 597. (Contributed by BJ, 20-Oct-2021.) |
Ref | Expression |
---|---|
syl2im.1 | ⊢ (𝜑 → 𝜓) |
syl2im.2 | ⊢ (𝜒 → 𝜃) |
syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl2imc | ⊢ (𝜒 → (𝜑 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 1, 2, 3 | syl2im 40 | . 2 ⊢ (𝜑 → (𝜒 → 𝜏)) |
5 | 4 | com12 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: impbid21d 211 nanass 1507 triun 5280 mapfvd 8918 undifixp 8973 rankpwi 9861 rankelb 9862 2cshwcshw 14861 incexclem 15869 sumeven 16421 cygth 21608 cnpco 23291 txkgen 23676 reperflem 24854 lhop1lem 26067 ulmss 26455 2sqreultblem 27507 crctcshwlkn0lem4 29843 numclwwlk1lem2f1 30386 ontgval 36414 bj-dvelimdv1 36835 eel12131 44711 et-sqrtnegnre 46829 2ffzoeq 47277 iccpartgt 47352 bgoldbtbndlem3 47732 lincresunit3 48327 |
Copyright terms: Public domain | W3C validator |