| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2imc | Structured version Visualization version GIF version | ||
| Description: A commuted version of syl2im 40. Implication-only version of syl2anr 597. (Contributed by BJ, 20-Oct-2021.) |
| Ref | Expression |
|---|---|
| syl2im.1 | ⊢ (𝜑 → 𝜓) |
| syl2im.2 | ⊢ (𝜒 → 𝜃) |
| syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl2imc | ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2im.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 1, 2, 3 | syl2im 40 | . 2 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| 5 | 4 | com12 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: impbid21d 211 nanass 1511 triun 5216 mapfvd 8812 undifixp 8867 rankpwi 9726 rankelb 9727 2cshwcshw 14742 incexclem 15753 sumeven 16308 cygth 21518 cnpco 23192 txkgen 23577 reperflem 24744 lhop1lem 25955 ulmss 26343 2sqreultblem 27396 crctcshwlkn0lem4 29802 numclwwlk1lem2f1 30348 ontgval 36486 bj-dvelimdv1 36907 eel12131 44819 et-sqrtnegnre 46985 2ffzoeq 47441 iccpartgt 47541 bgoldbtbndlem3 47921 gpgprismgr4cycllem7 48215 lincresunit3 48596 |
| Copyright terms: Public domain | W3C validator |