| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2imc | Structured version Visualization version GIF version | ||
| Description: A commuted version of syl2im 40. Implication-only version of syl2anr 597. (Contributed by BJ, 20-Oct-2021.) |
| Ref | Expression |
|---|---|
| syl2im.1 | ⊢ (𝜑 → 𝜓) |
| syl2im.2 | ⊢ (𝜒 → 𝜃) |
| syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl2imc | ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2im.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 1, 2, 3 | syl2im 40 | . 2 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| 5 | 4 | com12 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: impbid21d 211 nanass 1510 triun 5229 mapfvd 8852 undifixp 8907 rankpwi 9776 rankelb 9777 2cshwcshw 14791 incexclem 15802 sumeven 16357 cygth 21481 cnpco 23154 txkgen 23539 reperflem 24707 lhop1lem 25918 ulmss 26306 2sqreultblem 27359 crctcshwlkn0lem4 29743 numclwwlk1lem2f1 30286 ontgval 36419 bj-dvelimdv1 36840 eel12131 44702 et-sqrtnegnre 46871 2ffzoeq 47328 iccpartgt 47428 bgoldbtbndlem3 47808 gpgprismgr4cycllem7 48091 lincresunit3 48470 |
| Copyright terms: Public domain | W3C validator |