Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2imc | Structured version Visualization version GIF version |
Description: A commuted version of syl2im 40. Implication-only version of syl2anr 596. (Contributed by BJ, 20-Oct-2021.) |
Ref | Expression |
---|---|
syl2im.1 | ⊢ (𝜑 → 𝜓) |
syl2im.2 | ⊢ (𝜒 → 𝜃) |
syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl2imc | ⊢ (𝜒 → (𝜑 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 1, 2, 3 | syl2im 40 | . 2 ⊢ (𝜑 → (𝜒 → 𝜏)) |
5 | 4 | com12 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: impbid21d 210 nanass 1502 triun 5200 mapfvd 8625 undifixp 8680 rankpwi 9512 rankelb 9513 2cshwcshw 14466 incexclem 15476 sumeven 16024 cygth 20691 cnpco 22326 txkgen 22711 reperflem 23887 lhop1lem 25082 ulmss 25461 2sqreultblem 26501 crctcshwlkn0lem4 28079 numclwwlk1lem2f1 28622 ontgval 34547 bj-dvelimdv1 34963 eel12131 42222 2ffzoeq 44708 iccpartgt 44767 bgoldbtbndlem3 45147 lincresunit3 45710 |
Copyright terms: Public domain | W3C validator |