![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2imc | Structured version Visualization version GIF version |
Description: A commuted version of syl2im 40. Implication-only version of syl2anr 596. (Contributed by BJ, 20-Oct-2021.) |
Ref | Expression |
---|---|
syl2im.1 | ⊢ (𝜑 → 𝜓) |
syl2im.2 | ⊢ (𝜒 → 𝜃) |
syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl2imc | ⊢ (𝜒 → (𝜑 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 1, 2, 3 | syl2im 40 | . 2 ⊢ (𝜑 → (𝜒 → 𝜏)) |
5 | 4 | com12 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: impbid21d 211 nanass 1507 triun 5298 mapfvd 8937 undifixp 8992 rankpwi 9892 rankelb 9893 2cshwcshw 14874 incexclem 15884 sumeven 16435 cygth 21613 cnpco 23296 txkgen 23681 reperflem 24859 lhop1lem 26072 ulmss 26458 2sqreultblem 27510 crctcshwlkn0lem4 29846 numclwwlk1lem2f1 30389 ontgval 36397 bj-dvelimdv1 36818 eel12131 44684 et-sqrtnegnre 46794 2ffzoeq 47242 iccpartgt 47301 bgoldbtbndlem3 47681 lincresunit3 48210 |
Copyright terms: Public domain | W3C validator |