| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2imc | Structured version Visualization version GIF version | ||
| Description: A commuted version of syl2im 40. Implication-only version of syl2anr 597. (Contributed by BJ, 20-Oct-2021.) |
| Ref | Expression |
|---|---|
| syl2im.1 | ⊢ (𝜑 → 𝜓) |
| syl2im.2 | ⊢ (𝜒 → 𝜃) |
| syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl2imc | ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2im.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 1, 2, 3 | syl2im 40 | . 2 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| 5 | 4 | com12 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: impbid21d 211 nanass 1510 triun 5244 mapfvd 8893 undifixp 8948 rankpwi 9837 rankelb 9838 2cshwcshw 14844 incexclem 15852 sumeven 16406 cygth 21532 cnpco 23205 txkgen 23590 reperflem 24758 lhop1lem 25970 ulmss 26358 2sqreultblem 27411 crctcshwlkn0lem4 29795 numclwwlk1lem2f1 30338 ontgval 36449 bj-dvelimdv1 36870 eel12131 44737 et-sqrtnegnre 46902 2ffzoeq 47356 iccpartgt 47441 bgoldbtbndlem3 47821 gpgprismgr4cycllem7 48100 lincresunit3 48457 |
| Copyright terms: Public domain | W3C validator |