![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2imc | Structured version Visualization version GIF version |
Description: A commuted version of syl2im 40. Implication-only version of syl2anr 597. (Contributed by BJ, 20-Oct-2021.) |
Ref | Expression |
---|---|
syl2im.1 | ⊢ (𝜑 → 𝜓) |
syl2im.2 | ⊢ (𝜒 → 𝜃) |
syl2im.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl2imc | ⊢ (𝜒 → (𝜑 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2im.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl2im.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
4 | 1, 2, 3 | syl2im 40 | . 2 ⊢ (𝜑 → (𝜒 → 𝜏)) |
5 | 4 | com12 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: impbid21d 210 nanass 1508 triun 5280 mapfvd 8872 undifixp 8927 rankpwi 9817 rankelb 9818 2cshwcshw 14775 incexclem 15781 sumeven 16329 cygth 21126 cnpco 22770 txkgen 23155 reperflem 24333 lhop1lem 25529 ulmss 25908 2sqreultblem 26948 crctcshwlkn0lem4 29064 numclwwlk1lem2f1 29607 ontgval 35311 bj-dvelimdv1 35726 eel12131 43464 et-sqrtnegnre 45579 2ffzoeq 46026 iccpartgt 46085 bgoldbtbndlem3 46465 lincresunit3 47152 |
Copyright terms: Public domain | W3C validator |