Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eelT01 Structured version   Visualization version   GIF version

Theorem eelT01 41909
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
eelT01.1 (⊤ → 𝜑)
eelT01.2 𝜓
eelT01.3 (𝜒𝜃)
eelT01.4 ((𝜑𝜓𝜃) → 𝜏)
Assertion
Ref Expression
eelT01 (𝜒𝜏)

Proof of Theorem eelT01
StepHypRef Expression
1 3anass 1096 . . 3 ((⊤ ∧ 𝜓𝜒) ↔ (⊤ ∧ (𝜓𝜒)))
2 truan 1553 . . 3 ((⊤ ∧ (𝜓𝜒)) ↔ (𝜓𝜒))
3 simpr 488 . . . 4 ((𝜓𝜒) → 𝜒)
4 eelT01.2 . . . . 5 𝜓
54jctl 527 . . . 4 (𝜒 → (𝜓𝜒))
63, 5impbii 212 . . 3 ((𝜓𝜒) ↔ 𝜒)
71, 2, 63bitri 300 . 2 ((⊤ ∧ 𝜓𝜒) ↔ 𝜒)
8 eelT01.3 . . 3 (𝜒𝜃)
9 eelT01.1 . . . 4 (⊤ → 𝜑)
10 eelT01.4 . . . 4 ((𝜑𝜓𝜃) → 𝜏)
119, 10syl3an1 1164 . . 3 ((⊤ ∧ 𝜓𝜃) → 𝜏)
128, 11syl3an3 1166 . 2 ((⊤ ∧ 𝜓𝜒) → 𝜏)
137, 12sylbir 238 1 (𝜒𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088  wtru 1543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1090  df-tru 1545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator