| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eexinst01 | Structured version Visualization version GIF version | ||
| Description: exinst01 44578 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eexinst01.1 | ⊢ ∃𝑥𝜓 |
| eexinst01.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| eexinst01.3 | ⊢ (𝜑 → ∀𝑥𝜑) |
| eexinst01.4 | ⊢ (𝜒 → ∀𝑥𝜒) |
| Ref | Expression |
|---|---|
| eexinst01 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eexinst01.1 | . 2 ⊢ ∃𝑥𝜓 | |
| 2 | eexinst01.3 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | eexinst01.4 | . . 3 ⊢ (𝜒 → ∀𝑥𝜒) | |
| 4 | eexinst01.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 5 | 2, 3, 4 | exlimdh 2289 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| 6 | 1, 5 | mpi 20 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: vk15.4j 44481 exinst01 44578 |
| Copyright terms: Public domain | W3C validator |