Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eexinst01 | Structured version Visualization version GIF version |
Description: exinst01 42245 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eexinst01.1 | ⊢ ∃𝑥𝜓 |
eexinst01.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
eexinst01.3 | ⊢ (𝜑 → ∀𝑥𝜑) |
eexinst01.4 | ⊢ (𝜒 → ∀𝑥𝜒) |
Ref | Expression |
---|---|
eexinst01 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eexinst01.1 | . 2 ⊢ ∃𝑥𝜓 | |
2 | eexinst01.3 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | eexinst01.4 | . . 3 ⊢ (𝜒 → ∀𝑥𝜒) | |
4 | eexinst01.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
5 | 2, 3, 4 | exlimdh 2287 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
6 | 1, 5 | mpi 20 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: vk15.4j 42148 exinst01 42245 |
Copyright terms: Public domain | W3C validator |