|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > exlimdh | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 28-Jan-1997.) | 
| Ref | Expression | 
|---|---|
| exlimdh.1 | ⊢ (𝜑 → ∀𝑥𝜑) | 
| exlimdh.2 | ⊢ (𝜒 → ∀𝑥𝜒) | 
| exlimdh.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| Ref | Expression | 
|---|---|
| exlimdh | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exlimdh.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | nf5i 2146 | . 2 ⊢ Ⅎ𝑥𝜑 | 
| 3 | exlimdh.2 | . . 3 ⊢ (𝜒 → ∀𝑥𝜒) | |
| 4 | 3 | nf5i 2146 | . 2 ⊢ Ⅎ𝑥𝜒 | 
| 5 | exlimdh.3 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 6 | 2, 4, 5 | exlimd 2218 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: exlimexi 44544 eexinst01 44546 eexinst11 44547 | 
| Copyright terms: Public domain | W3C validator |