Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exlimdh | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 28-Jan-1997.) |
Ref | Expression |
---|---|
exlimdh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
exlimdh.2 | ⊢ (𝜒 → ∀𝑥𝜒) |
exlimdh.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimdh | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimdh.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | nf5i 2144 | . 2 ⊢ Ⅎ𝑥𝜑 |
3 | exlimdh.2 | . . 3 ⊢ (𝜒 → ∀𝑥𝜒) | |
4 | 3 | nf5i 2144 | . 2 ⊢ Ⅎ𝑥𝜒 |
5 | exlimdh.3 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
6 | 2, 4, 5 | exlimd 2214 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: exlimexi 42033 eexinst01 42035 eexinst11 42036 |
Copyright terms: Public domain | W3C validator |