| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimdh | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 28-Jan-1997.) |
| Ref | Expression |
|---|---|
| exlimdh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| exlimdh.2 | ⊢ (𝜒 → ∀𝑥𝜒) |
| exlimdh.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimdh | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdh.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | nf5i 2147 | . 2 ⊢ Ⅎ𝑥𝜑 |
| 3 | exlimdh.2 | . . 3 ⊢ (𝜒 → ∀𝑥𝜒) | |
| 4 | 3 | nf5i 2147 | . 2 ⊢ Ⅎ𝑥𝜒 |
| 5 | exlimdh.3 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 6 | 2, 4, 5 | exlimd 2219 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: exlimexi 44516 eexinst01 44518 eexinst11 44519 |
| Copyright terms: Public domain | W3C validator |