Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eexinst11 Structured version   Visualization version   GIF version

Theorem eexinst11 42036
Description: exinst11 42135 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
eexinst11.1 (𝜑 → ∃𝑥𝜓)
eexinst11.2 (𝜑 → (𝜓𝜒))
eexinst11.3 (𝜑 → ∀𝑥𝜑)
eexinst11.4 (𝜒 → ∀𝑥𝜒)
Assertion
Ref Expression
eexinst11 (𝜑𝜒)

Proof of Theorem eexinst11
StepHypRef Expression
1 eexinst11.1 . . 3 (𝜑 → ∃𝑥𝜓)
2 eexinst11.3 . . . 4 (𝜑 → ∀𝑥𝜑)
3 eexinst11.4 . . . 4 (𝜒 → ∀𝑥𝜒)
4 eexinst11.2 . . . 4 (𝜑 → (𝜓𝜒))
52, 3, 4exlimdh 2290 . . 3 (𝜑 → (∃𝑥𝜓𝜒))
61, 5syl5com 31 . 2 (𝜑 → (𝜑𝜒))
76pm2.43i 52 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-nf 1788
This theorem is referenced by:  vk15.4j  42037  exinst11  42135
  Copyright terms: Public domain W3C validator