| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sb5ALT | Structured version Visualization version GIF version | ||
| Description: Equivalence for substitution. Alternate proof of sb5 2275. This proof is sb5ALTVD 44866 automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sb5ALT | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsb1 2494 | . . . 4 ⊢ [𝑦 / 𝑥]𝑥 = 𝑦 | |
| 2 | sban 2079 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑) ↔ ([𝑦 / 𝑥]𝑥 = 𝑦 ∧ [𝑦 / 𝑥]𝜑)) | |
| 3 | 2 | simplbi2com 502 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑))) |
| 4 | 1, 3 | mpi 20 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑)) |
| 5 | spsbe 2081 | . . 3 ⊢ ([𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| 7 | hbs1 2273 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
| 8 | simpr 484 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝜑) | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ((𝑥 = 𝑦 ∧ 𝜑) → 𝜑)) |
| 10 | simpl 482 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝑥 = 𝑦) | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ((𝑥 = 𝑦 ∧ 𝜑) → 𝑥 = 𝑦)) |
| 12 | sbequ1 2247 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
| 13 | 12 | com12 32 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝑦 → [𝑦 / 𝑥]𝜑)) |
| 14 | 9, 11, 13 | syl6c 70 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ((𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑)) |
| 15 | 7, 14 | exlimexi 44477 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑) |
| 16 | 6, 15 | impbii 209 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1778 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 ax-13 2375 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-sb 2064 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |