Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sb5ALT | Structured version Visualization version GIF version |
Description: Equivalence for substitution. Alternate proof of sb5 2268. This proof is sb5ALTVD 42533 automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sb5ALT | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsb1 2495 | . . . 4 ⊢ [𝑦 / 𝑥]𝑥 = 𝑦 | |
2 | sban 2083 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑) ↔ ([𝑦 / 𝑥]𝑥 = 𝑦 ∧ [𝑦 / 𝑥]𝜑)) | |
3 | 2 | simplbi2com 503 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑))) |
4 | 1, 3 | mpi 20 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑)) |
5 | spsbe 2085 | . . 3 ⊢ ([𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
7 | hbs1 2266 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
8 | simpr 485 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝜑) | |
9 | 8 | a1i 11 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ((𝑥 = 𝑦 ∧ 𝜑) → 𝜑)) |
10 | simpl 483 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝑥 = 𝑦) | |
11 | 10 | a1i 11 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ((𝑥 = 𝑦 ∧ 𝜑) → 𝑥 = 𝑦)) |
12 | sbequ1 2240 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
13 | 12 | com12 32 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝑦 → [𝑦 / 𝑥]𝜑)) |
14 | 9, 11, 13 | syl6c 70 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ((𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑)) |
15 | 7, 14 | exlimexi 42144 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑) |
16 | 6, 15 | impbii 208 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∃wex 1782 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-sb 2068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |