Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > exinst11 | Structured version Visualization version GIF version |
Description: Existential Instantiation. Virtual Deduction rule corresponding to a special case of the Natural Deduction Sequent Calculus rule called Rule C in [Margaris] p. 79 and E ∃ in Table 1 on page 4 of the paper "Extracting information from intermediate T-systems" (2000) presented at IMLA99 by Mauro Ferrari, Camillo Fiorentini, and Pierangelo Miglioli. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
exinst11.1 | ⊢ ( 𝜑 ▶ ∃𝑥𝜓 ) |
exinst11.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
exinst11.3 | ⊢ (𝜑 → ∀𝑥𝜑) |
exinst11.4 | ⊢ (𝜒 → ∀𝑥𝜒) |
Ref | Expression |
---|---|
exinst11 | ⊢ ( 𝜑 ▶ 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exinst11.1 | . . . 4 ⊢ ( 𝜑 ▶ ∃𝑥𝜓 ) | |
2 | 1 | in1 42191 | . . 3 ⊢ (𝜑 → ∃𝑥𝜓) |
3 | exinst11.2 | . . . 4 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
4 | 3 | dfvd2i 42205 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
5 | exinst11.3 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
6 | exinst11.4 | . . 3 ⊢ (𝜒 → ∀𝑥𝜒) | |
7 | 2, 4, 5, 6 | eexinst11 42147 | . 2 ⊢ (𝜑 → 𝜒) |
8 | 7 | dfvd1ir 42193 | 1 ⊢ ( 𝜑 ▶ 𝜒 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1782 ( wvd1 42189 ( wvd2 42197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-vd1 42190 df-vd2 42198 |
This theorem is referenced by: vk15.4jVD 42534 |
Copyright terms: Public domain | W3C validator |