Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmncan2 | Structured version Visualization version GIF version |
Description: Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.) |
Ref | Expression |
---|---|
dmncan.1 | ⊢ 𝐺 = (1st ‘𝑅) |
dmncan.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
dmncan.3 | ⊢ 𝑋 = ran 𝐺 |
dmncan.4 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
dmncan2 | ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐶 ≠ 𝑍) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmncrng 36214 | . . . 4 ⊢ (𝑅 ∈ Dmn → 𝑅 ∈ CRingOps) | |
2 | dmncan.1 | . . . . . . 7 ⊢ 𝐺 = (1st ‘𝑅) | |
3 | dmncan.2 | . . . . . . 7 ⊢ 𝐻 = (2nd ‘𝑅) | |
4 | dmncan.3 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
5 | 2, 3, 4 | crngocom 36159 | . . . . . 6 ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝐻𝐶) = (𝐶𝐻𝐴)) |
6 | 5 | 3adant3r2 1182 | . . . . 5 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐻𝐶) = (𝐶𝐻𝐴)) |
7 | 2, 3, 4 | crngocom 36159 | . . . . . 6 ⊢ ((𝑅 ∈ CRingOps ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐻𝐶) = (𝐶𝐻𝐵)) |
8 | 7 | 3adant3r1 1181 | . . . . 5 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐻𝐶) = (𝐶𝐻𝐵)) |
9 | 6, 8 | eqeq12d 2754 | . . . 4 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) ↔ (𝐶𝐻𝐴) = (𝐶𝐻𝐵))) |
10 | 1, 9 | sylan 580 | . . 3 ⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) ↔ (𝐶𝐻𝐴) = (𝐶𝐻𝐵))) |
11 | 10 | adantr 481 | . 2 ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐶 ≠ 𝑍) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) ↔ (𝐶𝐻𝐴) = (𝐶𝐻𝐵))) |
12 | 3anrot 1099 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) | |
13 | 12 | biimpri 227 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
14 | dmncan.4 | . . . 4 ⊢ 𝑍 = (GId‘𝐺) | |
15 | 2, 3, 4, 14 | dmncan1 36234 | . . 3 ⊢ (((𝑅 ∈ Dmn ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ∧ 𝐶 ≠ 𝑍) → ((𝐶𝐻𝐴) = (𝐶𝐻𝐵) → 𝐴 = 𝐵)) |
16 | 13, 15 | sylanl2 678 | . 2 ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐶 ≠ 𝑍) → ((𝐶𝐻𝐴) = (𝐶𝐻𝐵) → 𝐴 = 𝐵)) |
17 | 11, 16 | sylbid 239 | 1 ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐶 ≠ 𝑍) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ran crn 5590 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 2nd c2nd 7830 GIdcgi 28852 CRingOpsccring 36151 Dmncdmn 36205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-grpo 28855 df-gid 28856 df-ginv 28857 df-gdiv 28858 df-ablo 28907 df-ass 36001 df-exid 36003 df-mgmOLD 36007 df-sgrOLD 36019 df-mndo 36025 df-rngo 36053 df-com2 36148 df-crngo 36152 df-idl 36168 df-pridl 36169 df-prrngo 36206 df-dmn 36207 df-igen 36218 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |