| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmncan2 | Structured version Visualization version GIF version | ||
| Description: Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.) |
| Ref | Expression |
|---|---|
| dmncan.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| dmncan.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| dmncan.3 | ⊢ 𝑋 = ran 𝐺 |
| dmncan.4 | ⊢ 𝑍 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| dmncan2 | ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐶 ≠ 𝑍) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmncrng 38055 | . . . 4 ⊢ (𝑅 ∈ Dmn → 𝑅 ∈ CRingOps) | |
| 2 | dmncan.1 | . . . . . . 7 ⊢ 𝐺 = (1st ‘𝑅) | |
| 3 | dmncan.2 | . . . . . . 7 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 4 | dmncan.3 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
| 5 | 2, 3, 4 | crngocom 38000 | . . . . . 6 ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝐻𝐶) = (𝐶𝐻𝐴)) |
| 6 | 5 | 3adant3r2 1184 | . . . . 5 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐻𝐶) = (𝐶𝐻𝐴)) |
| 7 | 2, 3, 4 | crngocom 38000 | . . . . . 6 ⊢ ((𝑅 ∈ CRingOps ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐻𝐶) = (𝐶𝐻𝐵)) |
| 8 | 7 | 3adant3r1 1183 | . . . . 5 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐻𝐶) = (𝐶𝐻𝐵)) |
| 9 | 6, 8 | eqeq12d 2745 | . . . 4 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) ↔ (𝐶𝐻𝐴) = (𝐶𝐻𝐵))) |
| 10 | 1, 9 | sylan 580 | . . 3 ⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) ↔ (𝐶𝐻𝐴) = (𝐶𝐻𝐵))) |
| 11 | 10 | adantr 480 | . 2 ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐶 ≠ 𝑍) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) ↔ (𝐶𝐻𝐴) = (𝐶𝐻𝐵))) |
| 12 | 3anrot 1099 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) | |
| 13 | 12 | biimpri 228 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
| 14 | dmncan.4 | . . . 4 ⊢ 𝑍 = (GId‘𝐺) | |
| 15 | 2, 3, 4, 14 | dmncan1 38075 | . . 3 ⊢ (((𝑅 ∈ Dmn ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ∧ 𝐶 ≠ 𝑍) → ((𝐶𝐻𝐴) = (𝐶𝐻𝐵) → 𝐴 = 𝐵)) |
| 16 | 13, 15 | sylanl2 681 | . 2 ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐶 ≠ 𝑍) → ((𝐶𝐻𝐴) = (𝐶𝐻𝐵) → 𝐴 = 𝐵)) |
| 17 | 11, 16 | sylbid 240 | 1 ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐶 ≠ 𝑍) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ran crn 5624 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 GIdcgi 30453 CRingOpsccring 37992 Dmncdmn 38046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-1o 8395 df-en 8880 df-grpo 30456 df-gid 30457 df-ginv 30458 df-gdiv 30459 df-ablo 30508 df-ass 37842 df-exid 37844 df-mgmOLD 37848 df-sgrOLD 37860 df-mndo 37866 df-rngo 37894 df-com2 37989 df-crngo 37993 df-idl 38009 df-pridl 38010 df-prrngo 38047 df-dmn 38048 df-igen 38059 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |