| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmncan2 | Structured version Visualization version GIF version | ||
| Description: Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.) |
| Ref | Expression |
|---|---|
| dmncan.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| dmncan.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| dmncan.3 | ⊢ 𝑋 = ran 𝐺 |
| dmncan.4 | ⊢ 𝑍 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| dmncan2 | ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐶 ≠ 𝑍) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmncrng 38104 | . . . 4 ⊢ (𝑅 ∈ Dmn → 𝑅 ∈ CRingOps) | |
| 2 | dmncan.1 | . . . . . . 7 ⊢ 𝐺 = (1st ‘𝑅) | |
| 3 | dmncan.2 | . . . . . . 7 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 4 | dmncan.3 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
| 5 | 2, 3, 4 | crngocom 38049 | . . . . . 6 ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝐻𝐶) = (𝐶𝐻𝐴)) |
| 6 | 5 | 3adant3r2 1184 | . . . . 5 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐻𝐶) = (𝐶𝐻𝐴)) |
| 7 | 2, 3, 4 | crngocom 38049 | . . . . . 6 ⊢ ((𝑅 ∈ CRingOps ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐻𝐶) = (𝐶𝐻𝐵)) |
| 8 | 7 | 3adant3r1 1183 | . . . . 5 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐻𝐶) = (𝐶𝐻𝐵)) |
| 9 | 6, 8 | eqeq12d 2747 | . . . 4 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) ↔ (𝐶𝐻𝐴) = (𝐶𝐻𝐵))) |
| 10 | 1, 9 | sylan 580 | . . 3 ⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) ↔ (𝐶𝐻𝐴) = (𝐶𝐻𝐵))) |
| 11 | 10 | adantr 480 | . 2 ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐶 ≠ 𝑍) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) ↔ (𝐶𝐻𝐴) = (𝐶𝐻𝐵))) |
| 12 | 3anrot 1099 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) | |
| 13 | 12 | biimpri 228 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
| 14 | dmncan.4 | . . . 4 ⊢ 𝑍 = (GId‘𝐺) | |
| 15 | 2, 3, 4, 14 | dmncan1 38124 | . . 3 ⊢ (((𝑅 ∈ Dmn ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ∧ 𝐶 ≠ 𝑍) → ((𝐶𝐻𝐴) = (𝐶𝐻𝐵) → 𝐴 = 𝐵)) |
| 16 | 13, 15 | sylanl2 681 | . 2 ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐶 ≠ 𝑍) → ((𝐶𝐻𝐴) = (𝐶𝐻𝐵) → 𝐴 = 𝐵)) |
| 17 | 11, 16 | sylbid 240 | 1 ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐶 ≠ 𝑍) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ran crn 5615 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 GIdcgi 30470 CRingOpsccring 38041 Dmncdmn 38095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-1o 8385 df-en 8870 df-grpo 30473 df-gid 30474 df-ginv 30475 df-gdiv 30476 df-ablo 30525 df-ass 37891 df-exid 37893 df-mgmOLD 37897 df-sgrOLD 37909 df-mndo 37915 df-rngo 37943 df-com2 38038 df-crngo 38042 df-idl 38058 df-pridl 38059 df-prrngo 38096 df-dmn 38097 df-igen 38108 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |