Step | Hyp | Ref
| Expression |
1 | | mptbi12f.1 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐴 |
2 | | mptbi12f.2 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐵 |
3 | 1, 2 | nfeq 2920 |
. . . . . . 7
⊢
Ⅎ𝑥 𝐴 = 𝐵 |
4 | | eleq2 2827 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
5 | 3, 4 | alrimi 2206 |
. . . . . 6
⊢ (𝐴 = 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
6 | | ax-5 1913 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ∀𝑦(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
7 | 5, 6 | sylg 1825 |
. . . . 5
⊢ (𝐴 = 𝐵 → ∀𝑥∀𝑦(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
8 | | eqeq2 2750 |
. . . . . . . . 9
⊢ (𝐷 = 𝐸 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)) |
9 | 8 | alrimiv 1930 |
. . . . . . . 8
⊢ (𝐷 = 𝐸 → ∀𝑦(𝑦 = 𝐷 ↔ 𝑦 = 𝐸)) |
10 | 9 | ralimi 3087 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 𝐷 = 𝐸 → ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = 𝐷 ↔ 𝑦 = 𝐸)) |
11 | | df-ral 3069 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑦(𝑦 = 𝐷 ↔ 𝑦 = 𝐸) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) |
12 | 10, 11 | sylib 217 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝐷 = 𝐸 → ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) |
13 | | 19.21v 1942 |
. . . . . . 7
⊢
(∀𝑦(𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) |
14 | 13 | albii 1822 |
. . . . . 6
⊢
(∀𝑥∀𝑦(𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) |
15 | 12, 14 | sylibr 233 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐷 = 𝐸 → ∀𝑥∀𝑦(𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) |
16 | | id 22 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)))) |
17 | 16 | alanimi 1819 |
. . . . . 6
⊢
((∀𝑦(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑦(𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ∀𝑦((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)))) |
18 | 17 | alanimi 1819 |
. . . . 5
⊢
((∀𝑥∀𝑦(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑥∀𝑦(𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)))) |
19 | 7, 15, 18 | syl2an 596 |
. . . 4
⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐷 = 𝐸) → ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)))) |
20 | | tsan2 36300 |
. . . . . . . . . . . 12
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (𝑥 ∈ 𝐴 ∨ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷))) |
21 | 20 | ord 861 |
. . . . . . . . . . 11
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ 𝑥 ∈ 𝐴 → ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷))) |
22 | | tsbi2 36292 |
. . . . . . . . . . . . . . 15
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)) ∨ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)))) |
23 | 22 | ord 861 |
. . . . . . . . . . . . . 14
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)))) |
24 | 23 | a1dd 50 |
. . . . . . . . . . . . 13
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)) → (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))))) |
25 | | ax-1 6 |
. . . . . . . . . . . . 13
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)) → ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))))) |
26 | 24, 25 | contrd 36255 |
. . . . . . . . . . . 12
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) |
27 | 26 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ 𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)))) |
28 | 21, 27 | cnf1dd 36248 |
. . . . . . . . . 10
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) |
29 | | simplim 167 |
. . . . . . . . . . . . . 14
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)))) |
30 | 29 | a1d 25 |
. . . . . . . . . . . . 13
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))))) |
31 | | tsbi3 36293 |
. . . . . . . . . . . . . . 15
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵) ∨ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
32 | 31 | ord 861 |
. . . . . . . . . . . . . 14
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵) → ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
33 | | tsan2 36300 |
. . . . . . . . . . . . . . 15
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∨ ¬ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))))) |
34 | 33 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∨ ¬ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)))))) |
35 | 32, 34 | cnf1dd 36248 |
. . . . . . . . . . . . 13
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵) → ¬ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))))) |
36 | 30, 35 | contrd 36255 |
. . . . . . . . . . . 12
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵)) |
37 | 36 | ord 861 |
. . . . . . . . . . 11
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
38 | | tsan2 36300 |
. . . . . . . . . . . 12
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (𝑥 ∈ 𝐵 ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) |
39 | 38 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)))) |
40 | 37, 39 | cnf1dd 36248 |
. . . . . . . . . 10
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ 𝑥 ∈ 𝐴 → ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) |
41 | 28, 40 | contrd 36255 |
. . . . . . . . 9
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → 𝑥 ∈ 𝐴) |
42 | 41 | a1d 25 |
. . . . . . . 8
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → 𝑥 ∈ 𝐴)) |
43 | 29 | a1d 25 |
. . . . . . . . 9
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))))) |
44 | | tsan3 36301 |
. . . . . . . . . 10
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)) ∨ ¬ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))))) |
45 | 44 | a1d 25 |
. . . . . . . . 9
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → ((𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)) ∨ ¬ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)))))) |
46 | 43, 45 | cnfn2dd 36251 |
. . . . . . . 8
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)))) |
47 | 42, 46 | mpdd 43 |
. . . . . . 7
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) |
48 | | notnotr 130 |
. . . . . . . . . . . . . . . 16
⊢ (¬
¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)) |
49 | 48 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) |
50 | 38 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → (𝑥 ∈ 𝐵 ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)))) |
51 | 49, 50 | cnfn2dd 36251 |
. . . . . . . . . . . . . 14
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → 𝑥 ∈ 𝐵)) |
52 | 36 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵))) |
53 | 51, 52 | cnfn2dd 36251 |
. . . . . . . . . . . . 13
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → 𝑥 ∈ 𝐴)) |
54 | | tsan3 36301 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (𝑦 = 𝐸 ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) |
55 | 54 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → (𝑦 = 𝐸 ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)))) |
56 | 49, 55 | cnfn2dd 36251 |
. . . . . . . . . . . . . 14
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → 𝑦 = 𝐸)) |
57 | 29 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))))) |
58 | 44 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → ((𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)) ∨ ¬ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)))))) |
59 | 57, 58 | cnfn2dd 36251 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)))) |
60 | 53, 59 | mpdd 43 |
. . . . . . . . . . . . . . 15
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) |
61 | | tsbi3 36293 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → ((𝑦 = 𝐷 ∨ ¬ 𝑦 = 𝐸) ∨ ¬ (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) |
62 | 61 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → ((𝑦 = 𝐷 ∨ ¬ 𝑦 = 𝐸) ∨ ¬ (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)))) |
63 | 60, 62 | cnfn2dd 36251 |
. . . . . . . . . . . . . 14
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → (𝑦 = 𝐷 ∨ ¬ 𝑦 = 𝐸))) |
64 | 56, 63 | cnfn2dd 36251 |
. . . . . . . . . . . . 13
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → 𝑦 = 𝐷)) |
65 | 53, 64 | jcad 513 |
. . . . . . . . . . . 12
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷))) |
66 | | ax-1 6 |
. . . . . . . . . . . . . . 15
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))))) |
67 | | tsim3 36290 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)) ∨ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))))) |
68 | 67 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → (¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)) ∨ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)))))) |
69 | 66, 68 | cnf2dd 36249 |
. . . . . . . . . . . . . 14
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)))) |
70 | | tsbi1 36291 |
. . . . . . . . . . . . . . 15
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → ((¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)) ∨ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)))) |
71 | 70 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → ((¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)) ∨ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))))) |
72 | 69, 71 | cnf2dd 36249 |
. . . . . . . . . . . . 13
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → (¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)))) |
73 | 49, 72 | cnfn2dd 36251 |
. . . . . . . . . . . 12
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸) → ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷))) |
74 | 65, 73 | contrd 36255 |
. . . . . . . . . . 11
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)) |
75 | 74 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) |
76 | 26 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)))) |
77 | 75, 76 | cnf2dd 36249 |
. . . . . . . . 9
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷))) |
78 | | tsan3 36301 |
. . . . . . . . . 10
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (𝑦 = 𝐷 ∨ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷))) |
79 | 78 | a1d 25 |
. . . . . . . . 9
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → (𝑦 = 𝐷 ∨ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷)))) |
80 | 77, 79 | cnfn2dd 36251 |
. . . . . . . 8
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → 𝑦 = 𝐷)) |
81 | 33 | a1d 25 |
. . . . . . . . . . . . 13
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∨ ¬ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)))))) |
82 | 43, 81 | cnfn2dd 36251 |
. . . . . . . . . . . 12
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
83 | | tsbi4 36294 |
. . . . . . . . . . . . 13
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → ((¬ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∨ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
84 | 83 | a1d 25 |
. . . . . . . . . . . 12
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → ((¬
𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∨ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)))) |
85 | 82, 84 | cnfn2dd 36251 |
. . . . . . . . . . 11
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → (¬ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵))) |
86 | 42, 85 | cnfn1dd 36250 |
. . . . . . . . . 10
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → 𝑥 ∈ 𝐵)) |
87 | | tsan1 36299 |
. . . . . . . . . . . 12
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → ((¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑦 = 𝐸) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) |
88 | 87 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → ((¬
𝑥 ∈ 𝐵 ∨ ¬ 𝑦 = 𝐸) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)))) |
89 | 75, 88 | cnf2dd 36249 |
. . . . . . . . . 10
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → (¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑦 = 𝐸))) |
90 | 86, 89 | cnfn1dd 36250 |
. . . . . . . . 9
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → ¬ 𝑦 = 𝐸)) |
91 | | tsbi4 36294 |
. . . . . . . . . . 11
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → ((¬ 𝑦 = 𝐷 ∨ 𝑦 = 𝐸) ∨ ¬ (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) |
92 | 91 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → ((¬
𝑦 = 𝐷 ∨ 𝑦 = 𝐸) ∨ ¬ (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)))) |
93 | 92 | or32dd 36252 |
. . . . . . . . 9
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → ((¬
𝑦 = 𝐷 ∨ ¬ (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)) ∨ 𝑦 = 𝐸))) |
94 | 90, 93 | cnf2dd 36249 |
. . . . . . . 8
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → (¬ 𝑦 = 𝐷 ∨ ¬ (𝑦 = 𝐷 ↔ 𝑦 = 𝐸)))) |
95 | 80, 94 | cnfn1dd 36250 |
. . . . . . 7
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → (¬ ⊥ → ¬ (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) |
96 | 47, 95 | contrd 36255 |
. . . . . 6
⊢ (¬
(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) → ⊥) |
97 | 96 | efald2 36236 |
. . . . 5
⊢ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) |
98 | 97 | 2alimi 1815 |
. . . 4
⊢
(∀𝑥∀𝑦((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → (𝑦 = 𝐷 ↔ 𝑦 = 𝐸))) → ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) |
99 | 19, 98 | syl 17 |
. . 3
⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐷 = 𝐸) → ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) |
100 | | eqopab2bw 5461 |
. . 3
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)} ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸))) |
101 | 99, 100 | sylibr 233 |
. 2
⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐷 = 𝐸) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)}) |
102 | | df-mpt 5158 |
. 2
⊢ (𝑥 ∈ 𝐴 ↦ 𝐷) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷)} |
103 | | df-mpt 5158 |
. 2
⊢ (𝑥 ∈ 𝐵 ↦ 𝐸) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸)} |
104 | 101, 102,
103 | 3eqtr4g 2803 |
1
⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐷 = 𝐸) → (𝑥 ∈ 𝐴 ↦ 𝐷) = (𝑥 ∈ 𝐵 ↦ 𝐸)) |