Step | Hyp | Ref
| Expression |
1 | | mptbi12f.1 |
. . . . . . . 8
β’
β²π₯π΄ |
2 | | mptbi12f.2 |
. . . . . . . 8
β’
β²π₯π΅ |
3 | 1, 2 | nfeq 2916 |
. . . . . . 7
β’
β²π₯ π΄ = π΅ |
4 | | eleq2 2822 |
. . . . . . 7
β’ (π΄ = π΅ β (π₯ β π΄ β π₯ β π΅)) |
5 | 3, 4 | alrimi 2206 |
. . . . . 6
β’ (π΄ = π΅ β βπ₯(π₯ β π΄ β π₯ β π΅)) |
6 | | ax-5 1913 |
. . . . . 6
β’ ((π₯ β π΄ β π₯ β π΅) β βπ¦(π₯ β π΄ β π₯ β π΅)) |
7 | 5, 6 | sylg 1825 |
. . . . 5
β’ (π΄ = π΅ β βπ₯βπ¦(π₯ β π΄ β π₯ β π΅)) |
8 | | eqeq2 2744 |
. . . . . . . . 9
β’ (π· = πΈ β (π¦ = π· β π¦ = πΈ)) |
9 | 8 | alrimiv 1930 |
. . . . . . . 8
β’ (π· = πΈ β βπ¦(π¦ = π· β π¦ = πΈ)) |
10 | 9 | ralimi 3083 |
. . . . . . 7
β’
(βπ₯ β
π΄ π· = πΈ β βπ₯ β π΄ βπ¦(π¦ = π· β π¦ = πΈ)) |
11 | | df-ral 3062 |
. . . . . . 7
β’
(βπ₯ β
π΄ βπ¦(π¦ = π· β π¦ = πΈ) β βπ₯(π₯ β π΄ β βπ¦(π¦ = π· β π¦ = πΈ))) |
12 | 10, 11 | sylib 217 |
. . . . . 6
β’
(βπ₯ β
π΄ π· = πΈ β βπ₯(π₯ β π΄ β βπ¦(π¦ = π· β π¦ = πΈ))) |
13 | | 19.21v 1942 |
. . . . . . 7
β’
(βπ¦(π₯ β π΄ β (π¦ = π· β π¦ = πΈ)) β (π₯ β π΄ β βπ¦(π¦ = π· β π¦ = πΈ))) |
14 | 13 | albii 1821 |
. . . . . 6
β’
(βπ₯βπ¦(π₯ β π΄ β (π¦ = π· β π¦ = πΈ)) β βπ₯(π₯ β π΄ β βπ¦(π¦ = π· β π¦ = πΈ))) |
15 | 12, 14 | sylibr 233 |
. . . . 5
β’
(βπ₯ β
π΄ π· = πΈ β βπ₯βπ¦(π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) |
16 | | id 22 |
. . . . . . 7
β’ (((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ)))) |
17 | 16 | alanimi 1818 |
. . . . . 6
β’
((βπ¦(π₯ β π΄ β π₯ β π΅) β§ βπ¦(π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β βπ¦((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ)))) |
18 | 17 | alanimi 1818 |
. . . . 5
β’
((βπ₯βπ¦(π₯ β π΄ β π₯ β π΅) β§ βπ₯βπ¦(π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β βπ₯βπ¦((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ)))) |
19 | 7, 15, 18 | syl2an 596 |
. . . 4
β’ ((π΄ = π΅ β§ βπ₯ β π΄ π· = πΈ) β βπ₯βπ¦((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ)))) |
20 | | tsan2 36998 |
. . . . . . . . . . . 12
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (π₯ β π΄ β¨ Β¬ (π₯ β π΄ β§ π¦ = π·))) |
21 | 20 | ord 862 |
. . . . . . . . . . 11
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ π₯ β π΄ β Β¬ (π₯ β π΄ β§ π¦ = π·))) |
22 | | tsbi2 36990 |
. . . . . . . . . . . . . . 15
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (((π₯ β π΄ β§ π¦ = π·) β¨ (π₯ β π΅ β§ π¦ = πΈ)) β¨ ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ)))) |
23 | 22 | ord 862 |
. . . . . . . . . . . . . 14
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ ((π₯ β π΄ β§ π¦ = π·) β¨ (π₯ β π΅ β§ π¦ = πΈ)) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ)))) |
24 | 23 | a1dd 50 |
. . . . . . . . . . . . 13
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ ((π₯ β π΄ β§ π¦ = π·) β¨ (π₯ β π΅ β§ π¦ = πΈ)) β (((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))))) |
25 | | ax-1 6 |
. . . . . . . . . . . . 13
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ ((π₯ β π΄ β§ π¦ = π·) β¨ (π₯ β π΅ β§ π¦ = πΈ)) β Β¬ (((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))))) |
26 | 24, 25 | contrd 36953 |
. . . . . . . . . . . 12
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β¨ (π₯ β π΅ β§ π¦ = πΈ))) |
27 | 26 | a1d 25 |
. . . . . . . . . . 11
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ π₯ β π΄ β ((π₯ β π΄ β§ π¦ = π·) β¨ (π₯ β π΅ β§ π¦ = πΈ)))) |
28 | 21, 27 | cnf1dd 36946 |
. . . . . . . . . 10
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ π₯ β π΄ β (π₯ β π΅ β§ π¦ = πΈ))) |
29 | | simplim 167 |
. . . . . . . . . . . . . 14
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β ((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ)))) |
30 | 29 | a1d 25 |
. . . . . . . . . . . . 13
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ (π₯ β π΄ β¨ Β¬ π₯ β π΅) β ((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))))) |
31 | | tsbi3 36991 |
. . . . . . . . . . . . . . 15
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β ((π₯ β π΄ β¨ Β¬ π₯ β π΅) β¨ Β¬ (π₯ β π΄ β π₯ β π΅))) |
32 | 31 | ord 862 |
. . . . . . . . . . . . . 14
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ (π₯ β π΄ β¨ Β¬ π₯ β π΅) β Β¬ (π₯ β π΄ β π₯ β π΅))) |
33 | | tsan2 36998 |
. . . . . . . . . . . . . . 15
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β ((π₯ β π΄ β π₯ β π΅) β¨ Β¬ ((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))))) |
34 | 33 | a1d 25 |
. . . . . . . . . . . . . 14
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ (π₯ β π΄ β¨ Β¬ π₯ β π΅) β ((π₯ β π΄ β π₯ β π΅) β¨ Β¬ ((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ)))))) |
35 | 32, 34 | cnf1dd 36946 |
. . . . . . . . . . . . 13
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ (π₯ β π΄ β¨ Β¬ π₯ β π΅) β Β¬ ((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))))) |
36 | 30, 35 | contrd 36953 |
. . . . . . . . . . . 12
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (π₯ β π΄ β¨ Β¬ π₯ β π΅)) |
37 | 36 | ord 862 |
. . . . . . . . . . 11
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ π₯ β π΄ β Β¬ π₯ β π΅)) |
38 | | tsan2 36998 |
. . . . . . . . . . . 12
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (π₯ β π΅ β¨ Β¬ (π₯ β π΅ β§ π¦ = πΈ))) |
39 | 38 | a1d 25 |
. . . . . . . . . . 11
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ π₯ β π΄ β (π₯ β π΅ β¨ Β¬ (π₯ β π΅ β§ π¦ = πΈ)))) |
40 | 37, 39 | cnf1dd 36946 |
. . . . . . . . . 10
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ π₯ β π΄ β Β¬ (π₯ β π΅ β§ π¦ = πΈ))) |
41 | 28, 40 | contrd 36953 |
. . . . . . . . 9
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β π₯ β π΄) |
42 | 41 | a1d 25 |
. . . . . . . 8
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β π₯ β π΄)) |
43 | 29 | a1d 25 |
. . . . . . . . 9
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β ((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))))) |
44 | | tsan3 36999 |
. . . . . . . . . 10
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β ((π₯ β π΄ β (π¦ = π· β π¦ = πΈ)) β¨ Β¬ ((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))))) |
45 | 44 | a1d 25 |
. . . . . . . . 9
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β ((π₯ β π΄ β (π¦ = π· β π¦ = πΈ)) β¨ Β¬ ((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ)))))) |
46 | 43, 45 | cnfn2dd 36949 |
. . . . . . . 8
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β (π₯ β π΄ β (π¦ = π· β π¦ = πΈ)))) |
47 | 42, 46 | mpdd 43 |
. . . . . . 7
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β (π¦ = π· β π¦ = πΈ))) |
48 | | notnotr 130 |
. . . . . . . . . . . . . . . 16
β’ (Β¬
Β¬ (π₯ β π΅ β§ π¦ = πΈ) β (π₯ β π΅ β§ π¦ = πΈ)) |
49 | 48 | a1i 11 |
. . . . . . . . . . . . . . 15
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β (π₯ β π΅ β§ π¦ = πΈ))) |
50 | 38 | a1d 25 |
. . . . . . . . . . . . . . 15
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β (π₯ β π΅ β¨ Β¬ (π₯ β π΅ β§ π¦ = πΈ)))) |
51 | 49, 50 | cnfn2dd 36949 |
. . . . . . . . . . . . . 14
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β π₯ β π΅)) |
52 | 36 | a1d 25 |
. . . . . . . . . . . . . 14
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β (π₯ β π΄ β¨ Β¬ π₯ β π΅))) |
53 | 51, 52 | cnfn2dd 36949 |
. . . . . . . . . . . . 13
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β π₯ β π΄)) |
54 | | tsan3 36999 |
. . . . . . . . . . . . . . . 16
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (π¦ = πΈ β¨ Β¬ (π₯ β π΅ β§ π¦ = πΈ))) |
55 | 54 | a1d 25 |
. . . . . . . . . . . . . . 15
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β (π¦ = πΈ β¨ Β¬ (π₯ β π΅ β§ π¦ = πΈ)))) |
56 | 49, 55 | cnfn2dd 36949 |
. . . . . . . . . . . . . 14
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β π¦ = πΈ)) |
57 | 29 | a1d 25 |
. . . . . . . . . . . . . . . . 17
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β ((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))))) |
58 | 44 | a1d 25 |
. . . . . . . . . . . . . . . . 17
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β ((π₯ β π΄ β (π¦ = π· β π¦ = πΈ)) β¨ Β¬ ((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ)))))) |
59 | 57, 58 | cnfn2dd 36949 |
. . . . . . . . . . . . . . . 16
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β (π₯ β π΄ β (π¦ = π· β π¦ = πΈ)))) |
60 | 53, 59 | mpdd 43 |
. . . . . . . . . . . . . . 15
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β (π¦ = π· β π¦ = πΈ))) |
61 | | tsbi3 36991 |
. . . . . . . . . . . . . . . 16
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β ((π¦ = π· β¨ Β¬ π¦ = πΈ) β¨ Β¬ (π¦ = π· β π¦ = πΈ))) |
62 | 61 | a1d 25 |
. . . . . . . . . . . . . . 15
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β ((π¦ = π· β¨ Β¬ π¦ = πΈ) β¨ Β¬ (π¦ = π· β π¦ = πΈ)))) |
63 | 60, 62 | cnfn2dd 36949 |
. . . . . . . . . . . . . 14
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β (π¦ = π· β¨ Β¬ π¦ = πΈ))) |
64 | 56, 63 | cnfn2dd 36949 |
. . . . . . . . . . . . 13
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β π¦ = π·)) |
65 | 53, 64 | jcad 513 |
. . . . . . . . . . . 12
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β (π₯ β π΄ β§ π¦ = π·))) |
66 | | ax-1 6 |
. . . . . . . . . . . . . . 15
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β Β¬ (((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))))) |
67 | | tsim3 36988 |
. . . . . . . . . . . . . . . 16
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ)) β¨ (((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))))) |
68 | 67 | a1d 25 |
. . . . . . . . . . . . . . 15
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β (Β¬ ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ)) β¨ (((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ)))))) |
69 | 66, 68 | cnf2dd 36947 |
. . . . . . . . . . . . . 14
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β Β¬ ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ)))) |
70 | | tsbi1 36989 |
. . . . . . . . . . . . . . 15
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β ((Β¬ (π₯ β π΄ β§ π¦ = π·) β¨ Β¬ (π₯ β π΅ β§ π¦ = πΈ)) β¨ ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ)))) |
71 | 70 | a1d 25 |
. . . . . . . . . . . . . 14
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β ((Β¬ (π₯ β π΄ β§ π¦ = π·) β¨ Β¬ (π₯ β π΅ β§ π¦ = πΈ)) β¨ ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))))) |
72 | 69, 71 | cnf2dd 36947 |
. . . . . . . . . . . . 13
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β (Β¬ (π₯ β π΄ β§ π¦ = π·) β¨ Β¬ (π₯ β π΅ β§ π¦ = πΈ)))) |
73 | 49, 72 | cnfn2dd 36949 |
. . . . . . . . . . . 12
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ Β¬ (π₯ β π΅ β§ π¦ = πΈ) β Β¬ (π₯ β π΄ β§ π¦ = π·))) |
74 | 65, 73 | contrd 36953 |
. . . . . . . . . . 11
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β Β¬ (π₯ β π΅ β§ π¦ = πΈ)) |
75 | 74 | a1d 25 |
. . . . . . . . . 10
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β Β¬ (π₯ β π΅ β§ π¦ = πΈ))) |
76 | 26 | a1d 25 |
. . . . . . . . . 10
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β ((π₯ β π΄ β§ π¦ = π·) β¨ (π₯ β π΅ β§ π¦ = πΈ)))) |
77 | 75, 76 | cnf2dd 36947 |
. . . . . . . . 9
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β (π₯ β π΄ β§ π¦ = π·))) |
78 | | tsan3 36999 |
. . . . . . . . . 10
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (π¦ = π· β¨ Β¬ (π₯ β π΄ β§ π¦ = π·))) |
79 | 78 | a1d 25 |
. . . . . . . . 9
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β (π¦ = π· β¨ Β¬ (π₯ β π΄ β§ π¦ = π·)))) |
80 | 77, 79 | cnfn2dd 36949 |
. . . . . . . 8
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β π¦ = π·)) |
81 | 33 | a1d 25 |
. . . . . . . . . . . . 13
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β ((π₯ β π΄ β π₯ β π΅) β¨ Β¬ ((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ)))))) |
82 | 43, 81 | cnfn2dd 36949 |
. . . . . . . . . . . 12
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β (π₯ β π΄ β π₯ β π΅))) |
83 | | tsbi4 36992 |
. . . . . . . . . . . . 13
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β ((Β¬ π₯ β π΄ β¨ π₯ β π΅) β¨ Β¬ (π₯ β π΄ β π₯ β π΅))) |
84 | 83 | a1d 25 |
. . . . . . . . . . . 12
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β ((Β¬
π₯ β π΄ β¨ π₯ β π΅) β¨ Β¬ (π₯ β π΄ β π₯ β π΅)))) |
85 | 82, 84 | cnfn2dd 36949 |
. . . . . . . . . . 11
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β (Β¬ π₯ β π΄ β¨ π₯ β π΅))) |
86 | 42, 85 | cnfn1dd 36948 |
. . . . . . . . . 10
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β π₯ β π΅)) |
87 | | tsan1 36997 |
. . . . . . . . . . . 12
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β ((Β¬ π₯ β π΅ β¨ Β¬ π¦ = πΈ) β¨ (π₯ β π΅ β§ π¦ = πΈ))) |
88 | 87 | a1d 25 |
. . . . . . . . . . 11
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β ((Β¬
π₯ β π΅ β¨ Β¬ π¦ = πΈ) β¨ (π₯ β π΅ β§ π¦ = πΈ)))) |
89 | 75, 88 | cnf2dd 36947 |
. . . . . . . . . 10
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β (Β¬ π₯ β π΅ β¨ Β¬ π¦ = πΈ))) |
90 | 86, 89 | cnfn1dd 36948 |
. . . . . . . . 9
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β Β¬ π¦ = πΈ)) |
91 | | tsbi4 36992 |
. . . . . . . . . . 11
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β ((Β¬ π¦ = π· β¨ π¦ = πΈ) β¨ Β¬ (π¦ = π· β π¦ = πΈ))) |
92 | 91 | a1d 25 |
. . . . . . . . . 10
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β ((Β¬
π¦ = π· β¨ π¦ = πΈ) β¨ Β¬ (π¦ = π· β π¦ = πΈ)))) |
93 | 92 | or32dd 36950 |
. . . . . . . . 9
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β ((Β¬
π¦ = π· β¨ Β¬ (π¦ = π· β π¦ = πΈ)) β¨ π¦ = πΈ))) |
94 | 90, 93 | cnf2dd 36947 |
. . . . . . . 8
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β (Β¬ π¦ = π· β¨ Β¬ (π¦ = π· β π¦ = πΈ)))) |
95 | 80, 94 | cnfn1dd 36948 |
. . . . . . 7
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β (Β¬ β₯ β Β¬ (π¦ = π· β π¦ = πΈ))) |
96 | 47, 95 | contrd 36953 |
. . . . . 6
β’ (Β¬
(((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) β β₯) |
97 | 96 | efald2 36934 |
. . . . 5
β’ (((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β ((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) |
98 | 97 | 2alimi 1814 |
. . . 4
β’
(βπ₯βπ¦((π₯ β π΄ β π₯ β π΅) β§ (π₯ β π΄ β (π¦ = π· β π¦ = πΈ))) β βπ₯βπ¦((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) |
99 | 19, 98 | syl 17 |
. . 3
β’ ((π΄ = π΅ β§ βπ₯ β π΄ π· = πΈ) β βπ₯βπ¦((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) |
100 | | eqopab2bw 5547 |
. . 3
β’
({β¨π₯, π¦β© β£ (π₯ β π΄ β§ π¦ = π·)} = {β¨π₯, π¦β© β£ (π₯ β π΅ β§ π¦ = πΈ)} β βπ₯βπ¦((π₯ β π΄ β§ π¦ = π·) β (π₯ β π΅ β§ π¦ = πΈ))) |
101 | 99, 100 | sylibr 233 |
. 2
β’ ((π΄ = π΅ β§ βπ₯ β π΄ π· = πΈ) β {β¨π₯, π¦β© β£ (π₯ β π΄ β§ π¦ = π·)} = {β¨π₯, π¦β© β£ (π₯ β π΅ β§ π¦ = πΈ)}) |
102 | | df-mpt 5231 |
. 2
β’ (π₯ β π΄ β¦ π·) = {β¨π₯, π¦β© β£ (π₯ β π΄ β§ π¦ = π·)} |
103 | | df-mpt 5231 |
. 2
β’ (π₯ β π΅ β¦ πΈ) = {β¨π₯, π¦β© β£ (π₯ β π΅ β§ π¦ = πΈ)} |
104 | 101, 102,
103 | 3eqtr4g 2797 |
1
β’ ((π΄ = π΅ β§ βπ₯ β π΄ π· = πΈ) β (π₯ β π΄ β¦ π·) = (π₯ β π΅ β¦ πΈ)) |