Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  el1 Structured version   Visualization version   GIF version

Theorem el1 42272
Description: A Virtual deduction elimination rule. syl 17 is el1 42272 without virtual deductions. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
el1.1 (   𝜑   ▶   𝜓   )
el1.2 (𝜓𝜒)
Assertion
Ref Expression
el1 (   𝜑   ▶   𝜒   )

Proof of Theorem el1
StepHypRef Expression
1 el1.1 . . . 4 (   𝜑   ▶   𝜓   )
21in1 42215 . . 3 (𝜑𝜓)
3 el1.2 . . 3 (𝜓𝜒)
42, 3syl 17 . 2 (𝜑𝜒)
54dfvd1ir 42217 1 (   𝜑   ▶   𝜒   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 42213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-vd1 42214
This theorem is referenced by:  sspwimpVD  42563  sspwimpcfVD  42565  suctrALTcfVD  42567
  Copyright terms: Public domain W3C validator