MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq2dALT Structured version   Visualization version   GIF version

Theorem eleq2dALT 2825
Description: Alternate proof of eleq2d 2824, shorter at the expense of requiring ax-12 2171. (Contributed by NM, 27-Dec-1993.) (Revised by Wolf Lammen, 20-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
eleq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
eleq2dALT (𝜑 → (𝐶𝐴𝐶𝐵))

Proof of Theorem eleq2dALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1d.1 . . . . . 6 (𝜑𝐴 = 𝐵)
2 dfcleq 2731 . . . . . 6 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
31, 2sylib 217 . . . . 5 (𝜑 → ∀𝑥(𝑥𝐴𝑥𝐵))
4319.21bi 2182 . . . 4 (𝜑 → (𝑥𝐴𝑥𝐵))
54anbi2d 629 . . 3 (𝜑 → ((𝑥 = 𝐶𝑥𝐴) ↔ (𝑥 = 𝐶𝑥𝐵)))
65exbidv 1924 . 2 (𝜑 → (∃𝑥(𝑥 = 𝐶𝑥𝐴) ↔ ∃𝑥(𝑥 = 𝐶𝑥𝐵)))
7 dfclel 2817 . 2 (𝐶𝐴 ↔ ∃𝑥(𝑥 = 𝐶𝑥𝐴))
8 dfclel 2817 . 2 (𝐶𝐵 ↔ ∃𝑥(𝑥 = 𝐶𝑥𝐵))
96, 7, 83bitr4g 314 1 (𝜑 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-clel 2816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator