HomeHome Metamath Proof Explorer
Theorem List (p. 29 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 2801-2900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsylan9eqr 2801 An equality transitivity deduction. (Contributed by NM, 8-May-1994.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐵 = 𝐶)       ((𝜓𝜑) → 𝐴 = 𝐶)
 
Theorem3eqtr3g 2802 A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.)
(𝜑𝐴 = 𝐵)    &   𝐴 = 𝐶    &   𝐵 = 𝐷       (𝜑𝐶 = 𝐷)
 
Theorem3eqtr3a 2803 A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.)
𝐴 = 𝐵    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐶 = 𝐷)
 
Theorem3eqtr4g 2804 A chained equality inference, useful for converting to definitions. (Contributed by NM, 21-Jun-1993.)
(𝜑𝐴 = 𝐵)    &   𝐶 = 𝐴    &   𝐷 = 𝐵       (𝜑𝐶 = 𝐷)
 
Theorem3eqtr4a 2805 A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   (𝜑𝐶 = 𝐴)    &   (𝜑𝐷 = 𝐵)       (𝜑𝐶 = 𝐷)
 
Theoremeq2tri 2806 A compound transitive inference for class equality. (Contributed by NM, 22-Jan-2004.)
(𝐴 = 𝐶𝐷 = 𝐹)    &   (𝐵 = 𝐷𝐶 = 𝐺)       ((𝐴 = 𝐶𝐵 = 𝐹) ↔ (𝐵 = 𝐷𝐴 = 𝐺))
 
Theoremabbi1 2807 Equivalent formulas yield equal class abstractions (closed form). This is the forward implication of abbi 2811, proved from fewer axioms. (Contributed by BJ and WL and SN, 20-Aug-2023.)
(∀𝑥(𝜑𝜓) → {𝑥𝜑} = {𝑥𝜓})
 
Theoremabbidv 2808* Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 10-Aug-1993.) Avoid ax-12 2172, based on an idea of Steven Nguyen. (Revised by Wolf Lammen, 6-May-2023.)
(𝜑 → (𝜓𝜒))       (𝜑 → {𝑥𝜓} = {𝑥𝜒})
 
Theoremabbii 2809 Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 26-May-1993.) Remove dependency on ax-10 2138, ax-11 2155, and ax-12 2172. (Revised by Steven Nguyen, 3-May-2023.)
(𝜑𝜓)       {𝑥𝜑} = {𝑥𝜓}
 
Theoremabbid 2810 Equivalent wff's yield equal class abstractions (deduction form, with nonfreeness hypothesis). (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) Avoid ax-10 2138 and ax-11 2155. (Revised by Wolf Lammen, 6-May-2023.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → {𝑥𝜓} = {𝑥𝜒})
 
Theoremabbi 2811 Equivalent formulas define equal class abstractions, and conversely. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-8 2109 and df-clel 2817 (by avoiding use of cleqh 2863). (Revised by BJ, 23-Jun-2019.)
(∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})
 
Theoremcbvabv 2812* Rule used to change bound variables, using implicit substitution. Version of cbvab 2815 with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2155 and ax-13 2373. (Revised by Steven Nguyen, 4-Dec-2022.)
(𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝜑} = {𝑦𝜓}
 
Theoremcbvabw 2813* Rule used to change bound variables, using implicit substitution. Version of cbvab 2815 with a disjoint variable condition, which does not require ax-10 2138, ax-13 2373. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Gino Giotto, 23-May-2024.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝜑} = {𝑦𝜓}
 
TheoremcbvabwOLD 2814* Obsolete version of cbvabw 2813 as of 23-May-2024. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝜑} = {𝑦𝜓}
 
Theoremcbvab 2815 Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2373. Usage of the weaker cbvabw 2813 and cbvabv 2812 are preferred. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) (New usage is discouraged.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝜑} = {𝑦𝜓}
 
Theoremabeq2w 2816* Version of abeq2 2873 using implicit substitution, which requires fewer axioms. (Contributed by GG and AV, 18-Sep-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (𝐴 = {𝑥𝜑} ↔ ∀𝑦(𝑦𝐴𝜓))
 
2.1.2.3  Class membership
 
Definitiondf-clel 2817* Define the membership connective between classes. Theorem 6.3 of [Quine] p. 41, or Proposition 4.6 of [TakeutiZaring] p. 13, which we adopt as a definition. See these references for its metalogical justification.

The hypotheses express that all instances of the conclusion where class variables are replaced with setvar variables hold. Therefore, this definition merely extends to class variables something that is true for setvar variables, hence is conservative. This is only a proof sketch of conservativity; for details see Appendix of [Levy] p. 357. This is the reason why we call this axiomatic statement a "definition", even though it does not have the usual form of a definition. If we required a definition to have the usual form, we would call df-clel 2817 an axiom.

See also comments under df-clab 2717, df-cleq 2731, and abeq2 2873.

Alternate characterizations of 𝐴𝐵 when either 𝐴 or 𝐵 is a set are given by clel2g 3589, clel3g 3592, and clel4g 3594.

This is called the "axiom of membership" by [Levy] p. 338, who treats the theory of classes as an extralogical extension to our logic and set theory axioms.

While the three class definitions df-clab 2717, df-cleq 2731, and df-clel 2817 are eliminable and conservative and thus meet the requirements for sound definitions, they are technically axioms in that they do not satisfy the requirements for the current definition checker. The proofs of conservativity require external justification that is beyond the scope of the definition checker.

For a general discussion of the theory of classes, see mmset.html#class 2817. (Contributed by NM, 26-May-1993.) (Revised by BJ, 27-Jun-2019.)

(𝑦𝑧 ↔ ∃𝑢(𝑢 = 𝑦𝑢𝑧))    &   (𝑡𝑡 ↔ ∃𝑣(𝑣 = 𝑡𝑣𝑡))       (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
 
Theoremdfclel 2818* Characterization of the elements of a class. (Contributed by BJ, 27-Jun-2019.)
(𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
 
Theoremelex2 2819* If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) Avoid ax-9 2117, ax-ext 2710, df-clab 2717. (Revised by Wolf Lammen, 30-Nov-2024.)
(𝐴𝐵 → ∃𝑥 𝑥𝐵)
 
Theoremelissetv 2820* An element of a class exists. Version of elisset 2821 with a disjoint variable condition on 𝑉, 𝑥, avoiding df-clab 2717. Prefer its use over elisset 2821 when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by BJ, 14-Sep-2019.)
(𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
 
Theoremelisset 2821* An element of a class exists. Use elissetv 2820 instead when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by NM, 1-May-1995.) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019.)
(𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
 
Theoremeleq1w 2822 Weaker version of eleq1 2827 (but more general than elequ1 2114) not depending on ax-ext 2710 nor df-cleq 2731.

Note that this provides a proof of ax-8 2109 from Tarski's FOL and dfclel 2818 (simply consider an instance where 𝐴 is replaced by a setvar and deduce the forward implication by biimpd 228), which shows that dfclel 2818 is too powerful to be used as a definition instead of df-clel 2817. (Contributed by BJ, 24-Jun-2019.)

(𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
 
Theoremeleq2w 2823 Weaker version of eleq2 2828 (but more general than elequ2 2122) not depending on ax-ext 2710 nor df-cleq 2731. (Contributed by BJ, 29-Sep-2019.)
(𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
 
Theoremeleq1d 2824 Deduction from equality to equivalence of membership. (Contributed by NM, 21-Jun-1993.) Allow shortening of eleq1 2827. (Revised by Wolf Lammen, 20-Nov-2019.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐶𝐵𝐶))
 
Theoremeleq2d 2825 Deduction from equality to equivalence of membership. (Contributed by NM, 27-Dec-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴𝐶𝐵))
 
Theoremeleq2dALT 2826 Alternate proof of eleq2d 2825, shorter at the expense of requiring ax-12 2172. (Contributed by NM, 27-Dec-1993.) (Revised by Wolf Lammen, 20-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴𝐶𝐵))
 
Theoremeleq1 2827 Equality implies equivalence of membership. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 20-Nov-2019.)
(𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
 
Theoremeleq2 2828 Equality implies equivalence of membership. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 20-Nov-2019.)
(𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
 
Theoremeleq12 2829 Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
 
Theoremeleq1i 2830 Inference from equality to equivalence of membership. (Contributed by NM, 21-Jun-1993.)
𝐴 = 𝐵       (𝐴𝐶𝐵𝐶)
 
Theoremeleq2i 2831 Inference from equality to equivalence of membership. (Contributed by NM, 26-May-1993.)
𝐴 = 𝐵       (𝐶𝐴𝐶𝐵)
 
Theoremeleq12i 2832 Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝐶𝐵𝐷)
 
Theoremeqneltri 2833 If a class is not an element of another class, an equal class is also not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
𝐴 = 𝐵    &    ¬ 𝐵𝐶        ¬ 𝐴𝐶
 
Theoremeleq12d 2834 Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐶𝐵𝐷))
 
Theoremeleq1a 2835 A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.)
(𝐴𝐵 → (𝐶 = 𝐴𝐶𝐵))
 
Theoremeqeltri 2836 Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.)
𝐴 = 𝐵    &   𝐵𝐶       𝐴𝐶
 
Theoremeqeltrri 2837 Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.)
𝐴 = 𝐵    &   𝐴𝐶       𝐵𝐶
 
Theoremeleqtri 2838 Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.)
𝐴𝐵    &   𝐵 = 𝐶       𝐴𝐶
 
Theoremeleqtrri 2839 Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.)
𝐴𝐵    &   𝐶 = 𝐵       𝐴𝐶
 
Theoremeqeltrd 2840 Substitution of equal classes into membership relation, deduction form. (Contributed by Raph Levien, 10-Dec-2002.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremeqeltrrd 2841 Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐴𝐶)       (𝜑𝐵𝐶)
 
Theoremeleqtrd 2842 Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.)
(𝜑𝐴𝐵)    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴𝐶)
 
Theoremeleqtrrd 2843 Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.)
(𝜑𝐴𝐵)    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴𝐶)
 
Theoremeqeltrid 2844 A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
𝐴 = 𝐵    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremeqeltrrid 2845 A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
𝐵 = 𝐴    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremeleqtrid 2846 A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
𝐴𝐵    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴𝐶)
 
Theoremeleqtrrid 2847 A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
𝐴𝐵    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴𝐶)
 
Theoremeqeltrdi 2848 A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
(𝜑𝐴 = 𝐵)    &   𝐵𝐶       (𝜑𝐴𝐶)
 
Theoremeqeltrrdi 2849 A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
(𝜑𝐵 = 𝐴)    &   𝐵𝐶       (𝜑𝐴𝐶)
 
Theoremeleqtrdi 2850 A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
(𝜑𝐴𝐵)    &   𝐵 = 𝐶       (𝜑𝐴𝐶)
 
Theoremeleqtrrdi 2851 A membership and equality inference. (Contributed by NM, 24-Apr-2005.)
(𝜑𝐴𝐵)    &   𝐶 = 𝐵       (𝜑𝐴𝐶)
 
Theorem3eltr3i 2852 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
𝐴𝐵    &   𝐴 = 𝐶    &   𝐵 = 𝐷       𝐶𝐷
 
Theorem3eltr4i 2853 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
𝐴𝐵    &   𝐶 = 𝐴    &   𝐷 = 𝐵       𝐶𝐷
 
Theorem3eltr3d 2854 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐴𝐵)    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐶𝐷)
 
Theorem3eltr4d 2855 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐴𝐵)    &   (𝜑𝐶 = 𝐴)    &   (𝜑𝐷 = 𝐵)       (𝜑𝐶𝐷)
 
Theorem3eltr3g 2856 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.)
(𝜑𝐴𝐵)    &   𝐴 = 𝐶    &   𝐵 = 𝐷       (𝜑𝐶𝐷)
 
Theorem3eltr4g 2857 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.)
(𝜑𝐴𝐵)    &   𝐶 = 𝐴    &   𝐷 = 𝐵       (𝜑𝐶𝐷)
 
Theoremeleq2s 2858 Substitution of equal classes into a membership antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(𝐴𝐵𝜑)    &   𝐶 = 𝐵       (𝐴𝐶𝜑)
 
Theoremeqneltrd 2859 If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → ¬ 𝐵𝐶)       (𝜑 → ¬ 𝐴𝐶)
 
Theoremeqneltrrd 2860 If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → ¬ 𝐴𝐶)       (𝜑 → ¬ 𝐵𝐶)
 
Theoremneleqtrd 2861 If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.)
(𝜑 → ¬ 𝐶𝐴)    &   (𝜑𝐴 = 𝐵)       (𝜑 → ¬ 𝐶𝐵)
 
Theoremneleqtrrd 2862 If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.)
(𝜑 → ¬ 𝐶𝐵)    &   (𝜑𝐴 = 𝐵)       (𝜑 → ¬ 𝐶𝐴)
 
Theoremcleqh 2863* Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq 2732. See also cleqf 2939. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 14-Nov-2019.) Remove dependency on ax-13 2373. (Revised by BJ, 30-Nov-2020.)
(𝑦𝐴 → ∀𝑥 𝑦𝐴)    &   (𝑦𝐵 → ∀𝑥 𝑦𝐵)       (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
 
Theoremnelneq 2864 A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.)
((𝐴𝐶 ∧ ¬ 𝐵𝐶) → ¬ 𝐴 = 𝐵)
 
Theoremnelneq2 2865 A way of showing two classes are not equal. (Contributed by NM, 12-Jan-2002.)
((𝐴𝐵 ∧ ¬ 𝐴𝐶) → ¬ 𝐵 = 𝐶)
 
Theoremeqsb1 2866* Substitution for the left-hand side in an equality. Class version of equsb3 2102. (Contributed by Rodolfo Medina, 28-Apr-2010.)
([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
 
Theoremclelsb1 2867* Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2115). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
 
Theoremclelsb2 2868* Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2124). (Contributed by Jim Kingdon, 22-Nov-2018.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 24-Nov-2024.)
([𝑦 / 𝑥]𝐴𝑥𝐴𝑦)
 
Theoremclelsb2OLD 2869* Obsolete version of clelsb2 2868 as of 24-Nov-2024.) (Contributed by Jim Kingdon, 22-Nov-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑦 / 𝑥]𝐴𝑥𝐴𝑦)
 
Theoremhbxfreq 2870 A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfrbi 1828 for equivalence version. (Contributed by NM, 21-Aug-2007.)
𝐴 = 𝐵    &   (𝑦𝐵 → ∀𝑥 𝑦𝐵)       (𝑦𝐴 → ∀𝑥 𝑦𝐴)
 
Theoremhblem 2871* Change the free variable of a hypothesis builder. (Contributed by NM, 21-Jun-1993.) (Revised by Andrew Salmon, 11-Jul-2011.) Add disjoint variable condition to avoid ax-13 2373. See hblemg 2872 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
(𝑦𝐴 → ∀𝑥 𝑦𝐴)       (𝑧𝐴 → ∀𝑥 𝑧𝐴)
 
Theoremhblemg 2872* Change the free variable of a hypothesis builder. Usage of this theorem is discouraged because it depends on ax-13 2373. See hblem 2871 for a version with more disjoint variable conditions, but not requiring ax-13 2373. (Contributed by NM, 21-Jun-1993.) (Revised by Andrew Salmon, 11-Jul-2011.) (New usage is discouraged.)
(𝑦𝐴 → ∀𝑥 𝑦𝐴)       (𝑧𝐴 → ∀𝑥 𝑧𝐴)
 
2.1.2.4  Elementary properties of class abstractions
 
Theoremabeq2 2873* Equality of a class variable and a class abstraction (also called a class builder). Theorem 5.1 of [Quine] p. 34. This theorem shows the relationship between expressions with class abstractions and expressions with class variables. Note that abbi 2811 and its relatives are among those useful for converting theorems with class variables to equivalent theorems with wff variables, by first substituting a class abstraction for each class variable.

Class variables can always be eliminated from a theorem to result in an equivalent theorem with wff variables, and vice-versa. The idea is roughly as follows. To convert a theorem with a wff variable 𝜑 (that has a free variable 𝑥) to a theorem with a class variable 𝐴, we substitute 𝑥𝐴 for 𝜑 throughout and simplify, where 𝐴 is a new class variable not already in the wff. An example is the conversion of zfauscl 5226 to inex1 5242 (look at the instance of zfauscl 5226 that occurs in the proof of inex1 5242). Conversely, to convert a theorem with a class variable 𝐴 to one with 𝜑, we substitute {𝑥𝜑} for 𝐴 throughout and simplify, where 𝑥 and 𝜑 are new setvar and wff variables not already in the wff. Examples include dfsymdif2 4185 and cp 9658; the latter derives a formula containing wff variables from substitution instances of the class variables in its equivalent formulation cplem2 9657. For more information on class variables, see Quine pp. 15-21 and/or Takeuti and Zaring pp. 10-13. Usage of abeq2w 2816 is preferred since it requires fewer axioms. (Contributed by NM, 26-May-1993.)

(𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
 
Theoremabeq1 2874* Equality of a class variable and a class abstraction. Commuted form of abeq2 2873. (Contributed by NM, 20-Aug-1993.)
({𝑥𝜑} = 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
 
Theoremabeq2d 2875 Equality of a class variable and a class abstraction (deduction form of abeq2 2873). (Contributed by NM, 16-Nov-1995.)
(𝜑𝐴 = {𝑥𝜓})       (𝜑 → (𝑥𝐴𝜓))
 
Theoremabeq2i 2876 Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.)
𝐴 = {𝑥𝜑}       (𝑥𝐴𝜑)
 
Theoremabeq1i 2877 Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Nov-2019.)
{𝑥𝜑} = 𝐴       (𝜑𝑥𝐴)
 
Theoremabbi2dv 2878* Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) Avoid ax-11 2155. (Revised by Wolf Lammen, 6-May-2023.)
(𝜑 → (𝑥𝐴𝜓))       (𝜑𝐴 = {𝑥𝜓})
 
Theoremabbi1dv 2879* Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Proof shortened by Wolf Lammen, 16-Nov-2019.)
(𝜑 → (𝜓𝑥𝐴))       (𝜑 → {𝑥𝜓} = 𝐴)
 
Theoremabbi2i 2880* Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 26-May-1993.) Avoid ax-11 2155. (Revised by Wolf Lammen, 6-May-2023.)
(𝑥𝐴𝜑)       𝐴 = {𝑥𝜑}
 
TheoremabbiOLD 2881 Obsolete proof of abbi 2811 as of 7-Jan-2024. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})
 
Theoremabid1 2882* Every class is equal to a class abstraction (the class of sets belonging to it). Theorem 5.2 of [Quine] p. 35. This is a generalization to classes of cvjust 2733. The proof does not rely on cvjust 2733, so cvjust 2733 could be proved as a special instance of it. Note however that abid1 2882 necessarily relies on df-clel 2817, whereas cvjust 2733 does not.

This theorem requires ax-ext 2710, df-clab 2717, df-cleq 2731, df-clel 2817, but to prove that any specific class term not containing class variables is a setvar or is equal to a class abstraction does not require these $a-statements. This last fact is a metatheorem, consequence of the fact that the only $a-statements with typecode class are cv 1538, cab 2716, and statements corresponding to defined class constructors.

Note on the simultaneous presence in set.mm of this abid1 2882 and its commuted form abid2 2883: It is rare that two forms so closely related both appear in set.mm. Indeed, such equalities are generally used in later proofs as parts of transitive inferences, and with the many variants of eqtri 2767 (search for *eqtr*), it would be rare that either one would shorten a proof compared to the other. There is typically a choice between what we call a "definitional form", where the shorter expression is on the LHS (left-hand side), and a "computational form", where the shorter expression is on the RHS (right-hand side). An example is df-2 12045 versus 1p1e2 12107. We do not need 1p1e2 12107, but because it occurs "naturally" in computations, it can be useful to have it directly, together with a uniform set of 1-digit operations like 1p2e3 12125, etc. In most cases, we do not need both a definitional and a computational forms. A definitional form would favor consistency with genuine definitions, while a computational form is often more natural. The situation is similar with biconditionals in propositional calculus: see for instance pm4.24 564 and anidm 565, while other biconditionals generally appear in a single form (either definitional, but more often computational). In the present case, the equality is important enough that both abid1 2882 and abid2 2883 are in set.mm.

(Contributed by NM, 26-Dec-1993.) (Revised by BJ, 10-Nov-2020.)

𝐴 = {𝑥𝑥𝐴}
 
Theoremabid2 2883* A simplification of class abstraction. Commuted form of abid1 2882. See comments there. (Contributed by NM, 26-Dec-1993.)
{𝑥𝑥𝐴} = 𝐴
 
Theoremclelab 2884* Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) Avoid ax-11 2155, see sbc5ALT 3746 for more details. (Revised by SN, 2-Sep-2024.)
(𝐴 ∈ {𝑥𝜑} ↔ ∃𝑥(𝑥 = 𝐴𝜑))
 
TheoremclelabOLD 2885* Obsolete version of clelab 2884 as of 2-Sep-2024. (Contributed by NM, 23-Dec-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝐴 ∈ {𝑥𝜑} ↔ ∃𝑥(𝑥 = 𝐴𝜑))
 
Theoremclabel 2886* Membership of a class abstraction in another class. (Contributed by NM, 17-Jan-2006.)
({𝑥𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑥(𝑥𝑦𝜑)))
 
Theoremsbab 2887* The right-hand side of the second equality is a way of representing proper substitution of 𝑦 for 𝑥 into a class variable. (Contributed by NM, 14-Sep-2003.)
(𝑥 = 𝑦𝐴 = {𝑧 ∣ [𝑦 / 𝑥]𝑧𝐴})
 
2.1.3  Class form not-free predicate
 
Syntaxwnfc 2888 Extend wff definition to include the not-free predicate for classes.
wff 𝑥𝐴
 
Theoremnfcjust 2889* Justification theorem for df-nfc 2890. (Contributed by Mario Carneiro, 13-Oct-2016.)
(∀𝑦𝑥 𝑦𝐴 ↔ ∀𝑧𝑥 𝑧𝐴)
 
Definitiondf-nfc 2890* Define the not-free predicate for classes. This is read "𝑥 is not free in 𝐴". Not-free means that the value of 𝑥 cannot affect the value of 𝐴, e.g., any occurrence of 𝑥 in 𝐴 is effectively bound by a "for all" or something that expands to one (such as "there exists"). It is defined in terms of the not-free predicate df-nf 1787 for wffs; see that definition for more information. (Contributed by Mario Carneiro, 11-Aug-2016.)
(𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
 
Theoremnfci 2891* Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥 𝑦𝐴       𝑥𝐴
 
Theoremnfcii 2892* Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
(𝑦𝐴 → ∀𝑥 𝑦𝐴)       𝑥𝐴
 
Theoremnfcr 2893* Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Drop ax-12 2172 but use ax-8 2109, df-clel 2817, and avoid a DV condition on 𝑦, 𝐴. (Revised by SN, 3-Jun-2024.)
(𝑥𝐴 → Ⅎ𝑥 𝑦𝐴)
 
TheoremnfcrALT 2894* Alternate version of nfcr 2893. Avoids ax-8 2109 but uses ax-12 2172. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝑥𝐴 → Ⅎ𝑥 𝑦𝐴)
 
Theoremnfcri 2895* Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2138, ax-11 2155. (Revised by Gino Giotto, 23-May-2024.) Avoid ax-12 2172 (adopting Wolf Lammen's 13-May-2023 proof). (Revised by SN, 3-Jun-2024.)
𝑥𝐴       𝑥 𝑦𝐴
 
Theoremnfcd 2896* Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥 𝑦𝐴)       (𝜑𝑥𝐴)
 
Theoremnfcrd 2897* Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
(𝜑𝑥𝐴)       (𝜑 → Ⅎ𝑥 𝑦𝐴)
 
TheoremnfcriOLD 2898* Obsolete version of nfcri 2895 as of 3-Jun-2024. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2138, ax-11 2155. (Revised by Gino Giotto, 23-May-2024.) Avoid ax-12 2172. (Revised by SN, 26-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑥𝐴       𝑥 𝑦𝐴
 
TheoremnfcriOLDOLD 2899* Obsolete version of nfcri 2895 as of 26-May-2024. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2138, ax-11 2155. (Revised by Gino Giotto, 23-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑥𝐴       𝑥 𝑦𝐴
 
Theoremnfcrii 2900* Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2138, ax-11 2155. (Revised by Gino Giotto, 23-May-2024.)
𝑥𝐴       (𝑦𝐴 → ∀𝑥 𝑦𝐴)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >