![]() |
Metamath
Proof Explorer Theorem List (p. 29 of 435) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28319) |
![]() (28320-29844) |
![]() (29845-43440) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | axi12 2801 | Axiom of Quantifier Introduction (intuitionistic logic axiom ax-i12). In classical logic, this is mostly a restatement of axc9 2401 (with one additional quantifier). But in intuitionistic logic, changing the negations and implications to disjunctions makes it stronger. (Contributed by Jim Kingdon, 31-Dec-2017.) |
⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | ||
Theorem | axbnd 2802 | Axiom of Bundling (intuitionistic logic axiom ax-bnd). In classical logic, this and axi12 2801 are fairly straightforward consequences of axc9 2401. But in intuitionistic logic, it is not easy to add the extra ∀𝑥 to axi12 2801 and so we treat the two as separate axioms. (Contributed by Jim Kingdon, 22-Mar-2018.) |
⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | ||
Set theory uses the formalism of propositional and predicate calculus to assert properties of arbitrary mathematical objects called "sets". A set can be an element of another set, and this relationship is indicated by the ∈ symbol. Starting with the simplest mathematical object, called the empty set, set theory builds up more and more complex structures whose existence follows from the axioms, eventually resulting in extremely complicated sets that we identify with the real numbers and other familiar mathematical objects. A simplistic concept of sets, sometimes called "naive set theory", is vulnerable to a paradox called "Russell's Paradox" (ru 3661), a discovery that revolutionized the foundations of mathematics and logic. Russell's Paradox spawned the development of set theories that countered the paradox, including the ZF set theory that is most widely used and is defined here. Except for Extensionality, the axioms basically say, "given an arbitrary set x (and, in the cases of Replacement and Regularity, provided that an antecedent is satisfied), there exists another set y based on or constructed from it, with the stated properties". (The axiom of Extensionality can also be restated this way as shown by axext2 2804.) The individual axiom links provide more detailed descriptions. We derive the redundant ZF axioms of Separation, Null Set, and Pairing from the others as theorems. | ||
Axiom | ax-ext 2803* |
Axiom of Extensionality. An axiom of Zermelo-Fraenkel set theory. It
states that two sets are identical if they contain the same elements.
Axiom Ext of [BellMachover] p.
461.
Set theory can also be formulated with a single primitive predicate ∈ on top of traditional predicate calculus without equality. In that case the Axiom of Extensionality becomes (∀𝑤(𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦) → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)), and equality 𝑥 = 𝑦 is defined as ∀𝑤(𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦). All of the usual axioms of equality then become theorems of set theory. See, for example, Axiom 1 of [TakeutiZaring] p. 8. To use the above "equality-free" version of Extensionality with Metamath's predicate calculus axioms, we would rewrite all axioms involving equality with equality expanded according to the above definition. Some of those axioms may be provable from ax-ext and would become redundant, but this hasn't been studied carefully. General remarks: Our set theory axioms are presented using defined connectives (↔, ∃, etc.) for convenience. However, it is implicitly understood that the actual axioms use only the primitive connectives →, ¬, ∀, =, and ∈. It is straightforward to establish the equivalence between the actual axioms and the ones we display, and we will not do so. It is important to understand that strictly speaking, all of our set theory axioms are really schemes that represent an infinite number of actual axioms. This is inherent in the design of Metamath ("metavariable math"), which manipulates only metavariables. For example, the metavariable 𝑥 in ax-ext 2803 can represent any actual variable v1, v2, v3,... . Distinct variable restrictions ($d) prevent us from substituting say v1 for both 𝑥 and 𝑧. This is in contrast to typical textbook presentations that present actual axioms (except for Replacement ax-rep 4994, which involves a wff metavariable). In practice, though, the theorems and proofs are essentially the same. The $d restrictions make each of the infinite axioms generated by the ax-ext 2803 scheme exactly logically equivalent to each other and in particular to the actual axiom of the textbook version. (Contributed by NM, 21-May-1993.) |
⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) | ||
Theorem | axext2 2804* | The Axiom of Extensionality (ax-ext 2803) restated so that it postulates the existence of a set 𝑧 given two arbitrary sets 𝑥 and 𝑦. This way to express it follows the general idea of the other ZFC axioms, which is to postulate the existence of sets given other sets. (Contributed by NM, 28-Sep-2003.) |
⊢ ∃𝑧((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) | ||
Theorem | axext3 2805* | A generalization of the Axiom of Extensionality in which 𝑥 and 𝑦 need not be distinct. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) Remove dependencies on ax-10 2192, ax-12 2220, ax-13 2389. (Revised by Wolf Lammen, 9-Dec-2019.) |
⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) | ||
Theorem | axext3ALT 2806* | Alternate proof of axext3 2805, shorter but uses more axioms. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) | ||
Theorem | axext4 2807* | A bidirectional version of Extensionality. Although this theorem "looks" like it is just a definition of equality, it requires the Axiom of Extensionality for its proof under our axiomatization. See the comments for ax-ext 2803 and df-cleq 2818. (Contributed by NM, 14-Nov-2008.) |
⊢ (𝑥 = 𝑦 ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | ||
Theorem | axextmo 2808* | There exists at most one set with prescribed elements. Theorem 1.1 of [BellMachover] p. 462. (Contributed by NM, 30-Jun-1994.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) Use the at-most-one quantifier. (Revised by BJ, 17-Sep-2022.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ ∃*𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ 𝜑) | ||
Theorem | bm1.1OLD 2809* | Obsolete version of axextmo 2808 as of 17-Sep-2022. (Contributed by NM, 30-Jun-1994.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) (Proof modification is discouraged.) Use axextmo 2808 instead. (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ 𝜑) → ∃!𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ 𝜑)) | ||
Theorem | nulmo 2810* | There exists at most one empty set. With either axnul 5012 or axnulALT 5011 or ax-nul 5013, this proves that there exists a unique empty set. In practice, once the language of classes is available, we use the stronger characterization among classes eq0 4158. (Contributed by NM, 22-Dec-2007.) Use the at-most-one quantifier. (Revised by BJ, 17-Sep-2022.) |
⊢ ∃*𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
Syntax | cab 2811 | Introduce the class builder or class abstraction notation ("the class of sets 𝑥 such that 𝜑 is true"). Our class variables 𝐴, 𝐵, etc. range over class builders (implicitly in the case of defined class terms such as df-nul 4145). Note that a setvar variable can be expressed as a class builder per theorem cvjust 2820, justifying the assignment of setvar variables to class variables via the use of cv 1655. |
class {𝑥 ∣ 𝜑} | ||
Definition | df-clab 2812 |
Define class abstraction notation (so-called by Quine), also called a
"class builder" in the literature. 𝑥 and 𝑦 need
not be distinct.
Definition 2.1 of [Quine] p. 16.
Typically, 𝜑 will have 𝑦 as a
free variable, and "{𝑦 ∣ 𝜑} " is read "the class of
all sets 𝑦
such that 𝜑(𝑦) is true." We do not define
{𝑦 ∣
𝜑} in
isolation but only as part of an expression that extends or
"overloads"
the ∈ relationship.
This is our first use of the ∈ symbol to connect classes instead of sets. The syntax definition wcel 2164, which extends or "overloads" the wel 2165 definition connecting setvar variables, requires that both sides of ∈ be classes. In df-cleq 2818 and df-clel 2821, we introduce a new kind of variable (class variable) that can be substituted with expressions such as {𝑦 ∣ 𝜑}. In the present definition, the 𝑥 on the left-hand side is a setvar variable. Syntax definition cv 1655 allows us to substitute a setvar variable 𝑥 for a class variable: all sets are classes by cvjust 2820 (but not necessarily vice-versa). For a full description of how classes are introduced and how to recover the primitive language, see the discussion in Quine (and under abeq2 2937 for a quick overview). Because class variables can be substituted with compound expressions and setvar variables cannot, it is often useful to convert a theorem containing a free setvar variable to a more general version with a class variable. This is done with theorems such as vtoclg 3482 which is used, for example, to convert elirrv 8770 to elirr 8771. This is called the "axiom of class comprehension" by [Levy] p. 338, who treats the theory of classes as an extralogical extension to our logic and set theory axioms. He calls the construction {𝑦 ∣ 𝜑} a "class term". While the three class definitions df-clab 2812, df-cleq 2818, and df-clel 2821 are eliminable and conservative and thus meet the requirements for sound definitions, they are technically axioms in that they do not satisfy the requirements for the current definition checker. The proofs of conservativity require external justification that is beyond the scope of the definition checker. For a general discussion of the theory of classes, see mmset.html#class. (Contributed by NM, 26-May-1993.) |
⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) | ||
Theorem | abid 2813 | Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 26-May-1993.) |
⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | ||
Theorem | hbab1 2814* | Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 26-May-1993.) |
⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) | ||
Theorem | nfsab1 2815* | Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | ||
Theorem | hbab 2816* | Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 1-Mar-1995.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} → ∀𝑥 𝑧 ∈ {𝑦 ∣ 𝜑}) | ||
Theorem | nfsab 2817* | Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} | ||
Definition | df-cleq 2818* |
Define the equality connective between classes. Definition 2.7 of
[Quine] p. 18. Also Definition 4.5 of
[TakeutiZaring] p. 13; Chapter 4
provides its justification and methods for eliminating it. Note that
its elimination will not necessarily result in a single wff in the
original language but possibly a "scheme" of wffs.
This is an example of a somewhat "risky" definition, meaning that it has a more complex than usual soundness justification (outside of Metamath), because it "overloads" or reuses the existing equality symbol rather than introducing a new symbol. This allows us to make statements that may not hold for the original symbol. For example, it permits us to deduce 𝑦 = 𝑧 ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧), which is not a theorem of logic but rather presupposes the Axiom of Extensionality (see theorem axext4 2807). We therefore include this axiom as a hypothesis, so that the use of Extensionality is properly indicated. See also comments under df-clab 2812, df-clel 2821, and abeq2 2937. In the form of dfcleq 2819, this is called the "axiom of extensionality" by [Levy] p. 338, who treats the theory of classes as an extralogical extension to our logic and set theory axioms. While the three class definitions df-clab 2812, df-cleq 2818, and df-clel 2821 are eliminable and conservative and thus meet the requirements for sound definitions, they are technically axioms in that they do not satisfy the requirements for the current definition checker. The proofs of conservativity require external justification that is beyond the scope of the definition checker. For a general discussion of the theory of classes, see mmset.html#class. (Contributed by NM, 15-Sep-1993.) |
⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) ⇒ ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | ||
Theorem | dfcleq 2819* | The same as df-cleq 2818 with the hypothesis removed using the Axiom of Extensionality ax-ext 2803. (Contributed by NM, 15-Sep-1993.) Revised to make use of axext3 2805 instead of ax-ext 2803, so that ax-9 2173 will appear in lists of axioms used by a proof, since df-cleq 2818 implies ax-9 2173 by theorem bj-ax9 33404. We may revisit this in the future. (Revised by NM, 28-Oct-2021.) (Proof modification is discouraged.) |
⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | ||
Theorem | cvjust 2820* | Every set is a class. Proposition 4.9 of [TakeutiZaring] p. 13. This theorem shows that a setvar variable can be expressed as a class abstraction. This provides a motivation for the class syntax construction cv 1655, which allows us to substitute a setvar variable for a class variable. See also cab 2811 and df-clab 2812. Note that this is not a rigorous justification, because cv 1655 is used as part of the proof of this theorem, but a careful argument can be made outside of the formalism of Metamath, for example as is done in Chapter 4 of Takeuti and Zaring. See also the discussion under the definition of class in [Jech] p. 4 showing that "Every set can be considered to be a class." See abid1 2949 for the version of cvjust 2820 extended to classes. (Contributed by NM, 7-Nov-2006.) |
⊢ 𝑥 = {𝑦 ∣ 𝑦 ∈ 𝑥} | ||
Definition | df-clel 2821* |
Define the membership connective between classes. Theorem 6.3 of
[Quine] p. 41, or Proposition 4.6 of [TakeutiZaring] p. 13, which we
adopt as a definition. See these references for its metalogical
justification. Note that like df-cleq 2818 it extends or "overloads" the
use of the existing membership symbol, but unlike df-cleq 2818 it does not
strengthen the set of valid wffs of logic when the class variables are
replaced with setvar variables (see cleljust 2172), so we don't include
any set theory axiom as a hypothesis. See also comments about the
syntax under df-clab 2812. Alternate definitions of 𝐴 ∈ 𝐵 (but that
require either 𝐴 or 𝐵 to be a set) are shown
by clel2 3558,
clel3 3560, and clel4 3561.
This is called the "axiom of membership" by [Levy] p. 338, who treats the theory of classes as an extralogical extension to our logic and set theory axioms. While the three class definitions df-clab 2812, df-cleq 2818, and df-clel 2821 are eliminable and conservative and thus meet the requirements for sound definitions, they are technically axioms in that they do not satisfy the requirements for the current definition checker. The proofs of conservativity require external justification that is beyond the scope of the definition checker. For a general discussion of the theory of classes, see mmset.html#class. (Contributed by NM, 26-May-1993.) |
⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | ||
Theorem | eqriv 2822* | Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ⇒ ⊢ 𝐴 = 𝐵 | ||
Theorem | eqrdv 2823* | Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | eqrdav 2824* | Deduce equality of classes from an equivalence of membership that depends on the membership variable. (Contributed by NM, 7-Nov-2008.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | eqid 2825 |
Law of identity (reflexivity of class equality). Theorem 6.4 of [Quine]
p. 41.
This is part of Frege's eighth axiom per Proposition 54 of [Frege1879] p. 50; see also biid 253. An early mention of this law can be found in Aristotle, Metaphysics, Z.17, 1041a10-20. (Thanks to Stefan Allan and BJ for this information.) (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 14-Oct-2017.) |
⊢ 𝐴 = 𝐴 | ||
Theorem | eqidd 2826 | Class identity law with antecedent. (Contributed by NM, 21-Aug-2008.) |
⊢ (𝜑 → 𝐴 = 𝐴) | ||
Theorem | eqeq1d 2827 | Deduction from equality to equivalence of equalities. (Contributed by NM, 27-Dec-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | ||
Theorem | eqeq1dALT 2828 | Shorter proof of eqeq1d 2827 based on more axioms. (Contributed by NM, 27-Dec-1993.) (Revised by Wolf Lammen, 19-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | ||
Theorem | eqeq1 2829 | Equality implies equivalence of equalities. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | ||
Theorem | eqeq1i 2830 | Inference from equality to equivalence of equalities. (Contributed by NM, 15-Jul-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) | ||
Theorem | eqcomd 2831 | Deduction from commutative law for class equality. (Contributed by NM, 15-Aug-1994.) Allow shortening of eqcom 2832. (Revised by Wolf Lammen, 19-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐵 = 𝐴) | ||
Theorem | eqcom 2832 | Commutative law for class equality. Theorem 6.5 of [Quine] p. 41. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | ||
Theorem | eqcoms 2833 | Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 24-Jun-1993.) |
⊢ (𝐴 = 𝐵 → 𝜑) ⇒ ⊢ (𝐵 = 𝐴 → 𝜑) | ||
Theorem | eqcomi 2834 | Inference from commutative law for class equality. (Contributed by NM, 26-May-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ 𝐵 = 𝐴 | ||
Theorem | eqeq2d 2835 | Deduction from equality to equivalence of equalities. (Contributed by NM, 27-Dec-1993.) Allow shortening of eqeq2 2836. (Revised by Wolf Lammen, 19-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) | ||
Theorem | eqeq2 2836 | Equality implies equivalence of equalities. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) | ||
Theorem | eqeq2i 2837 | Inference from equality to equivalence of equalities. (Contributed by NM, 26-May-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) | ||
Theorem | eqeq12 2838 | Equality relationship among 4 classes. (Contributed by NM, 3-Aug-1994.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | ||
Theorem | eqeq12i 2839 | A useful inference for substituting definitions into an equality. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) | ||
Theorem | eqeq12d 2840 | A useful inference for substituting definitions into an equality. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | ||
Theorem | eqeqan12d 2841 | A useful inference for substituting definitions into an equality. See also eqeqan12dALT 2842. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | ||
Theorem | eqeqan12dALT 2842 | Alternate proof of eqeqan12d 2841. This proof has one more step but one fewer essential step. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | ||
Theorem | eqeqan12rd 2843 | A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜓 ∧ 𝜑) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | ||
Theorem | eqeqan1dOLD 2844 | Implication of introducing a new equality. Obsolete as of 14-Feb-2023. Use eqeqan12d 2841 instead. (Contributed by Peter Mazsa, 17-Apr-2019.) (Proof shortened by AV, 10-Feb-2023.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | ||
Theorem | eqeqan1dOLDOLD 2845 | Obsolete proof of eqeqan1dOLD 2844 as of 10-Feb-2023. (Contributed by Peter Mazsa, 17-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | ||
Theorem | eqtr 2846 | Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) | ||
Theorem | eqtr2 2847 | A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) | ||
Theorem | eqtr3 2848 | A transitive law for class equality. (Contributed by NM, 20-May-2005.) |
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) | ||
Theorem | eqtri 2849 | An equality transitivity inference. (Contributed by NM, 26-May-1993.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐴 = 𝐶 | ||
Theorem | eqtr2i 2850 | An equality transitivity inference. (Contributed by NM, 21-Feb-1995.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐶 = 𝐴 | ||
Theorem | eqtr3i 2851 | An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐴 = 𝐶 ⇒ ⊢ 𝐵 = 𝐶 | ||
Theorem | eqtr4i 2852 | An equality transitivity inference. (Contributed by NM, 26-May-1993.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐵 ⇒ ⊢ 𝐴 = 𝐶 | ||
Theorem | 3eqtri 2853 | An inference from three chained equalities. (Contributed by NM, 29-Aug-1993.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐵 = 𝐶 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ 𝐴 = 𝐷 | ||
Theorem | 3eqtrri 2854 | An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐵 = 𝐶 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ 𝐷 = 𝐴 | ||
Theorem | 3eqtr2i 2855 | An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ 𝐴 = 𝐷 | ||
Theorem | 3eqtr2ri 2856 | An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ 𝐷 = 𝐴 | ||
Theorem | 3eqtr3i 2857 | An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ 𝐶 = 𝐷 | ||
Theorem | 3eqtr3ri 2858 | An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ 𝐷 = 𝐶 | ||
Theorem | 3eqtr4i 2859 | An inference from three chained equalities. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ 𝐶 = 𝐷 | ||
Theorem | 3eqtr4ri 2860 | An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ 𝐷 = 𝐶 | ||
Theorem | eqtrd 2861 | An equality transitivity deduction. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
Theorem | eqtr2d 2862 | An equality transitivity deduction. (Contributed by NM, 18-Oct-1999.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐶 = 𝐴) | ||
Theorem | eqtr3d 2863 | An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐶) ⇒ ⊢ (𝜑 → 𝐵 = 𝐶) | ||
Theorem | eqtr4d 2864 | An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
Theorem | 3eqtrd 2865 | A deduction from three chained equalities. (Contributed by NM, 29-Oct-1995.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → 𝐴 = 𝐷) | ||
Theorem | 3eqtrrd 2866 | A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → 𝐷 = 𝐴) | ||
Theorem | 3eqtr2d 2867 | A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → 𝐴 = 𝐷) | ||
Theorem | 3eqtr2rd 2868 | A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → 𝐷 = 𝐴) | ||
Theorem | 3eqtr3d 2869 | A deduction from three chained equalities. (Contributed by NM, 4-Aug-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐶 = 𝐷) | ||
Theorem | 3eqtr3rd 2870 | A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐷 = 𝐶) | ||
Theorem | 3eqtr4d 2871 | A deduction from three chained equalities. (Contributed by NM, 4-Aug-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶 = 𝐷) | ||
Theorem | 3eqtr4rd 2872 | A deduction from three chained equalities. (Contributed by NM, 21-Sep-1995.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐷 = 𝐶) | ||
Theorem | syl5eq 2873 | An equality transitivity deduction. (Contributed by NM, 21-Jun-1993.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
Theorem | syl5req 2874 | An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐶 = 𝐴) | ||
Theorem | syl5eqr 2875 | An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝐵 = 𝐴 & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
Theorem | syl5reqr 2876 | An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
⊢ 𝐵 = 𝐴 & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐶 = 𝐴) | ||
Theorem | syl6eq 2877 | An equality transitivity deduction. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐵 = 𝐶 ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
Theorem | syl6req 2878 | An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐵 = 𝐶 ⇒ ⊢ (𝜑 → 𝐶 = 𝐴) | ||
Theorem | syl6eqr 2879 | An equality transitivity deduction. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐶 = 𝐵 ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
Theorem | syl6reqr 2880 | An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐶 = 𝐵 ⇒ ⊢ (𝜑 → 𝐶 = 𝐴) | ||
Theorem | sylan9eq 2881 | An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐵 = 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | ||
Theorem | sylan9req 2882 | An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.) |
⊢ (𝜑 → 𝐵 = 𝐴) & ⊢ (𝜓 → 𝐵 = 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | ||
Theorem | sylan9eqr 2883 | An equality transitivity deduction. (Contributed by NM, 8-May-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐵 = 𝐶) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) | ||
Theorem | 3eqtr3g 2884 | A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝜑 → 𝐶 = 𝐷) | ||
Theorem | 3eqtr3a 2885 | A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐶 = 𝐷) | ||
Theorem | 3eqtr4g 2886 | A chained equality inference, useful for converting to definitions. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ (𝜑 → 𝐶 = 𝐷) | ||
Theorem | 3eqtr4a 2887 | A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶 = 𝐷) | ||
Theorem | eq2tri 2888 | A compound transitive inference for class equality. (Contributed by NM, 22-Jan-2004.) |
⊢ (𝐴 = 𝐶 → 𝐷 = 𝐹) & ⊢ (𝐵 = 𝐷 → 𝐶 = 𝐺) ⇒ ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐹) ↔ (𝐵 = 𝐷 ∧ 𝐴 = 𝐺)) | ||
Theorem | eleq1w 2889 | Weaker version of eleq1 2894 (but more general than elequ1 2171) not depending on ax-ext 2803 nor df-cleq 2818. (Contributed by BJ, 24-Jun-2019.) |
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | ||
Theorem | eleq2w 2890 | Weaker version of eleq2 2895 (but more general than elequ2 2178) not depending on ax-ext 2803 nor df-cleq 2818. (Contributed by BJ, 29-Sep-2019.) |
⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) | ||
Theorem | eleq1d 2891 | Deduction from equality to equivalence of membership. (Contributed by NM, 21-Jun-1993.) Allow shortening of eleq1 2894. (Revised by Wolf Lammen, 20-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | ||
Theorem | eleq2d 2892 | Deduction from equality to equivalence of membership. (Contributed by NM, 27-Dec-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) | ||
Theorem | eleq2dALT 2893 | Alternate proof of eleq2d 2892, shorter at the expense of requiring ax-12 2220. (Contributed by NM, 27-Dec-1993.) (Revised by Wolf Lammen, 20-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) | ||
Theorem | eleq1 2894 | Equality implies equivalence of membership. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | ||
Theorem | eleq2 2895 | Equality implies equivalence of membership. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) | ||
Theorem | eleq12 2896 | Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) | ||
Theorem | eleq1i 2897 | Inference from equality to equivalence of membership. (Contributed by NM, 21-Jun-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) | ||
Theorem | eleq2i 2898 | Inference from equality to equivalence of membership. (Contributed by NM, 26-May-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵) | ||
Theorem | eleq12i 2899 | Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷) | ||
Theorem | eleq12d 2900 | Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |