Home | Metamath
Proof Explorer Theorem List (p. 29 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sylan9eqr 2801 | An equality transitivity deduction. (Contributed by NM, 8-May-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐵 = 𝐶) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) | ||
Theorem | 3eqtr3g 2802 | A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝜑 → 𝐶 = 𝐷) | ||
Theorem | 3eqtr3a 2803 | A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐶 = 𝐷) | ||
Theorem | 3eqtr4g 2804 | A chained equality inference, useful for converting to definitions. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ (𝜑 → 𝐶 = 𝐷) | ||
Theorem | 3eqtr4a 2805 | A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶 = 𝐷) | ||
Theorem | eq2tri 2806 | A compound transitive inference for class equality. (Contributed by NM, 22-Jan-2004.) |
⊢ (𝐴 = 𝐶 → 𝐷 = 𝐹) & ⊢ (𝐵 = 𝐷 → 𝐶 = 𝐺) ⇒ ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐹) ↔ (𝐵 = 𝐷 ∧ 𝐴 = 𝐺)) | ||
Theorem | abbi1 2807 | Equivalent formulas yield equal class abstractions (closed form). This is the forward implication of abbi 2811, proved from fewer axioms. (Contributed by BJ and WL and SN, 20-Aug-2023.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | ||
Theorem | abbidv 2808* | Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 10-Aug-1993.) Avoid ax-12 2172, based on an idea of Steven Nguyen. (Revised by Wolf Lammen, 6-May-2023.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) | ||
Theorem | abbii 2809 | Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 26-May-1993.) Remove dependency on ax-10 2138, ax-11 2155, and ax-12 2172. (Revised by Steven Nguyen, 3-May-2023.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} | ||
Theorem | abbid 2810 | Equivalent wff's yield equal class abstractions (deduction form, with nonfreeness hypothesis). (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) Avoid ax-10 2138 and ax-11 2155. (Revised by Wolf Lammen, 6-May-2023.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) | ||
Theorem | abbi 2811 | Equivalent formulas define equal class abstractions, and conversely. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-8 2109 and df-clel 2817 (by avoiding use of cleqh 2863). (Revised by BJ, 23-Jun-2019.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | ||
Theorem | cbvabv 2812* | Rule used to change bound variables, using implicit substitution. Version of cbvab 2815 with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2155 and ax-13 2373. (Revised by Steven Nguyen, 4-Dec-2022.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | ||
Theorem | cbvabw 2813* | Rule used to change bound variables, using implicit substitution. Version of cbvab 2815 with a disjoint variable condition, which does not require ax-10 2138, ax-13 2373. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Gino Giotto, 23-May-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | ||
Theorem | cbvabwOLD 2814* | Obsolete version of cbvabw 2813 as of 23-May-2024. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | ||
Theorem | cbvab 2815 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2373. Usage of the weaker cbvabw 2813 and cbvabv 2812 are preferred. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | ||
Theorem | abeq2w 2816* | Version of abeq2 2873 using implicit substitution, which requires fewer axioms. (Contributed by GG and AV, 18-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝜓)) | ||
Definition | df-clel 2817* |
Define the membership connective between classes. Theorem 6.3 of
[Quine] p. 41, or Proposition 4.6 of [TakeutiZaring] p. 13, which we
adopt as a definition. See these references for its metalogical
justification.
The hypotheses express that all instances of the conclusion where class variables are replaced with setvar variables hold. Therefore, this definition merely extends to class variables something that is true for setvar variables, hence is conservative. This is only a proof sketch of conservativity; for details see Appendix of [Levy] p. 357. This is the reason why we call this axiomatic statement a "definition", even though it does not have the usual form of a definition. If we required a definition to have the usual form, we would call df-clel 2817 an axiom. See also comments under df-clab 2717, df-cleq 2731, and abeq2 2873. Alternate characterizations of 𝐴 ∈ 𝐵 when either 𝐴 or 𝐵 is a set are given by clel2g 3589, clel3g 3592, and clel4g 3594. This is called the "axiom of membership" by [Levy] p. 338, who treats the theory of classes as an extralogical extension to our logic and set theory axioms. While the three class definitions df-clab 2717, df-cleq 2731, and df-clel 2817 are eliminable and conservative and thus meet the requirements for sound definitions, they are technically axioms in that they do not satisfy the requirements for the current definition checker. The proofs of conservativity require external justification that is beyond the scope of the definition checker. For a general discussion of the theory of classes, see mmset.html#class 2817. (Contributed by NM, 26-May-1993.) (Revised by BJ, 27-Jun-2019.) |
⊢ (𝑦 ∈ 𝑧 ↔ ∃𝑢(𝑢 = 𝑦 ∧ 𝑢 ∈ 𝑧)) & ⊢ (𝑡 ∈ 𝑡 ↔ ∃𝑣(𝑣 = 𝑡 ∧ 𝑣 ∈ 𝑡)) ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | ||
Theorem | dfclel 2818* | Characterization of the elements of a class. (Contributed by BJ, 27-Jun-2019.) |
⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | ||
Theorem | elex2 2819* | If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) Avoid ax-9 2117, ax-ext 2710, df-clab 2717. (Revised by Wolf Lammen, 30-Nov-2024.) |
⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) | ||
Theorem | elissetv 2820* | An element of a class exists. Version of elisset 2821 with a disjoint variable condition on 𝑉, 𝑥, avoiding df-clab 2717. Prefer its use over elisset 2821 when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by BJ, 14-Sep-2019.) |
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | ||
Theorem | elisset 2821* | An element of a class exists. Use elissetv 2820 instead when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by NM, 1-May-1995.) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019.) |
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | ||
Theorem | eleq1w 2822 |
Weaker version of eleq1 2827 (but more general than elequ1 2114) not
depending on ax-ext 2710 nor df-cleq 2731.
Note that this provides a proof of ax-8 2109 from Tarski's FOL and dfclel 2818 (simply consider an instance where 𝐴 is replaced by a setvar and deduce the forward implication by biimpd 228), which shows that dfclel 2818 is too powerful to be used as a definition instead of df-clel 2817. (Contributed by BJ, 24-Jun-2019.) |
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | ||
Theorem | eleq2w 2823 | Weaker version of eleq2 2828 (but more general than elequ2 2122) not depending on ax-ext 2710 nor df-cleq 2731. (Contributed by BJ, 29-Sep-2019.) |
⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) | ||
Theorem | eleq1d 2824 | Deduction from equality to equivalence of membership. (Contributed by NM, 21-Jun-1993.) Allow shortening of eleq1 2827. (Revised by Wolf Lammen, 20-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | ||
Theorem | eleq2d 2825 | Deduction from equality to equivalence of membership. (Contributed by NM, 27-Dec-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) | ||
Theorem | eleq2dALT 2826 | Alternate proof of eleq2d 2825, shorter at the expense of requiring ax-12 2172. (Contributed by NM, 27-Dec-1993.) (Revised by Wolf Lammen, 20-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) | ||
Theorem | eleq1 2827 | Equality implies equivalence of membership. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | ||
Theorem | eleq2 2828 | Equality implies equivalence of membership. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) | ||
Theorem | eleq12 2829 | Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) | ||
Theorem | eleq1i 2830 | Inference from equality to equivalence of membership. (Contributed by NM, 21-Jun-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) | ||
Theorem | eleq2i 2831 | Inference from equality to equivalence of membership. (Contributed by NM, 26-May-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵) | ||
Theorem | eleq12i 2832 | Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷) | ||
Theorem | eqneltri 2833 | If a class is not an element of another class, an equal class is also not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ 𝐴 = 𝐵 & ⊢ ¬ 𝐵 ∈ 𝐶 ⇒ ⊢ ¬ 𝐴 ∈ 𝐶 | ||
Theorem | eleq12d 2834 | Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) | ||
Theorem | eleq1a 2835 | A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) | ||
Theorem | eqeltri 2836 | Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐵 ∈ 𝐶 ⇒ ⊢ 𝐴 ∈ 𝐶 | ||
Theorem | eqeltrri 2837 | Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ 𝐵 ∈ 𝐶 | ||
Theorem | eleqtri 2838 | Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐴 ∈ 𝐶 | ||
Theorem | eleqtrri 2839 | Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐶 = 𝐵 ⇒ ⊢ 𝐴 ∈ 𝐶 | ||
Theorem | eqeltrd 2840 | Substitution of equal classes into membership relation, deduction form. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eqeltrrd 2841 | Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝐶) | ||
Theorem | eleqtrd 2842 | Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrrd 2843 | Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eqeltrid 2844 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eqeltrrid 2845 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ 𝐵 = 𝐴 & ⊢ (𝜑 → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrid 2846 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrrid 2847 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eqeltrdi 2848 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐵 ∈ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eqeltrrdi 2849 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ (𝜑 → 𝐵 = 𝐴) & ⊢ 𝐵 ∈ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrdi 2850 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝐵 = 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrrdi 2851 | A membership and equality inference. (Contributed by NM, 24-Apr-2005.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝐶 = 𝐵 ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | 3eltr3i 2852 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ 𝐶 ∈ 𝐷 | ||
Theorem | 3eltr4i 2853 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ 𝐶 ∈ 𝐷 | ||
Theorem | 3eltr3d 2854 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐷) | ||
Theorem | 3eltr4d 2855 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐷) | ||
Theorem | 3eltr3g 2856 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐷) | ||
Theorem | 3eltr4g 2857 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐷) | ||
Theorem | eleq2s 2858 | Substitution of equal classes into a membership antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝐴 ∈ 𝐵 → 𝜑) & ⊢ 𝐶 = 𝐵 ⇒ ⊢ (𝐴 ∈ 𝐶 → 𝜑) | ||
Theorem | eqneltrd 2859 | If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) | ||
Theorem | eqneltrrd 2860 | If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | ||
Theorem | neleqtrd 2861 | If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | ||
Theorem | neleqtrrd 2862 | If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | ||
Theorem | cleqh 2863* | Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq 2732. See also cleqf 2939. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 14-Nov-2019.) Remove dependency on ax-13 2373. (Revised by BJ, 30-Nov-2020.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) & ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) ⇒ ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | ||
Theorem | nelneq 2864 | A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.) |
⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) | ||
Theorem | nelneq2 2865 | A way of showing two classes are not equal. (Contributed by NM, 12-Jan-2002.) |
⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) | ||
Theorem | eqsb1 2866* | Substitution for the left-hand side in an equality. Class version of equsb3 2102. (Contributed by Rodolfo Medina, 28-Apr-2010.) |
⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴) | ||
Theorem | clelsb1 2867* | Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2115). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | ||
Theorem | clelsb2 2868* | Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2124). (Contributed by Jim Kingdon, 22-Nov-2018.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 24-Nov-2024.) |
⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) | ||
Theorem | clelsb2OLD 2869* | Obsolete version of clelsb2 2868 as of 24-Nov-2024.) (Contributed by Jim Kingdon, 22-Nov-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) | ||
Theorem | hbxfreq 2870 | A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfrbi 1828 for equivalence version. (Contributed by NM, 21-Aug-2007.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) ⇒ ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | ||
Theorem | hblem 2871* | Change the free variable of a hypothesis builder. (Contributed by NM, 21-Jun-1993.) (Revised by Andrew Salmon, 11-Jul-2011.) Add disjoint variable condition to avoid ax-13 2373. See hblemg 2872 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) ⇒ ⊢ (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) | ||
Theorem | hblemg 2872* | Change the free variable of a hypothesis builder. Usage of this theorem is discouraged because it depends on ax-13 2373. See hblem 2871 for a version with more disjoint variable conditions, but not requiring ax-13 2373. (Contributed by NM, 21-Jun-1993.) (Revised by Andrew Salmon, 11-Jul-2011.) (New usage is discouraged.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) ⇒ ⊢ (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) | ||
Theorem | abeq2 2873* |
Equality of a class variable and a class abstraction (also called a
class builder). Theorem 5.1 of [Quine]
p. 34. This theorem shows the
relationship between expressions with class abstractions and expressions
with class variables. Note that abbi 2811 and its relatives are among
those useful for converting theorems with class variables to equivalent
theorems with wff variables, by first substituting a class abstraction
for each class variable.
Class variables can always be eliminated from a theorem to result in an equivalent theorem with wff variables, and vice-versa. The idea is roughly as follows. To convert a theorem with a wff variable 𝜑 (that has a free variable 𝑥) to a theorem with a class variable 𝐴, we substitute 𝑥 ∈ 𝐴 for 𝜑 throughout and simplify, where 𝐴 is a new class variable not already in the wff. An example is the conversion of zfauscl 5226 to inex1 5242 (look at the instance of zfauscl 5226 that occurs in the proof of inex1 5242). Conversely, to convert a theorem with a class variable 𝐴 to one with 𝜑, we substitute {𝑥 ∣ 𝜑} for 𝐴 throughout and simplify, where 𝑥 and 𝜑 are new setvar and wff variables not already in the wff. Examples include dfsymdif2 4185 and cp 9658; the latter derives a formula containing wff variables from substitution instances of the class variables in its equivalent formulation cplem2 9657. For more information on class variables, see Quine pp. 15-21 and/or Takeuti and Zaring pp. 10-13. Usage of abeq2w 2816 is preferred since it requires fewer axioms. (Contributed by NM, 26-May-1993.) |
⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) | ||
Theorem | abeq1 2874* | Equality of a class variable and a class abstraction. Commuted form of abeq2 2873. (Contributed by NM, 20-Aug-1993.) |
⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ ∀𝑥(𝜑 ↔ 𝑥 ∈ 𝐴)) | ||
Theorem | abeq2d 2875 | Equality of a class variable and a class abstraction (deduction form of abeq2 2873). (Contributed by NM, 16-Nov-1995.) |
⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) | ||
Theorem | abeq2i 2876 | Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
⊢ 𝐴 = {𝑥 ∣ 𝜑} ⇒ ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | ||
Theorem | abeq1i 2877 | Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
⊢ {𝑥 ∣ 𝜑} = 𝐴 ⇒ ⊢ (𝜑 ↔ 𝑥 ∈ 𝐴) | ||
Theorem | abbi2dv 2878* | Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) Avoid ax-11 2155. (Revised by Wolf Lammen, 6-May-2023.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) ⇒ ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) | ||
Theorem | abbi1dv 2879* | Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) | ||
Theorem | abbi2i 2880* | Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 26-May-1993.) Avoid ax-11 2155. (Revised by Wolf Lammen, 6-May-2023.) |
⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) ⇒ ⊢ 𝐴 = {𝑥 ∣ 𝜑} | ||
Theorem | abbiOLD 2881 | Obsolete proof of abbi 2811 as of 7-Jan-2024. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | ||
Theorem | abid1 2882* |
Every class is equal to a class abstraction (the class of sets belonging
to it). Theorem 5.2 of [Quine] p. 35.
This is a generalization to
classes of cvjust 2733. The proof does not rely on cvjust 2733, so cvjust 2733
could be proved as a special instance of it. Note however that abid1 2882
necessarily relies on df-clel 2817, whereas cvjust 2733 does not.
This theorem requires ax-ext 2710, df-clab 2717, df-cleq 2731, df-clel 2817, but to prove that any specific class term not containing class variables is a setvar or is equal to a class abstraction does not require these $a-statements. This last fact is a metatheorem, consequence of the fact that the only $a-statements with typecode class are cv 1538, cab 2716, and statements corresponding to defined class constructors. Note on the simultaneous presence in set.mm of this abid1 2882 and its commuted form abid2 2883: It is rare that two forms so closely related both appear in set.mm. Indeed, such equalities are generally used in later proofs as parts of transitive inferences, and with the many variants of eqtri 2767 (search for *eqtr*), it would be rare that either one would shorten a proof compared to the other. There is typically a choice between what we call a "definitional form", where the shorter expression is on the LHS (left-hand side), and a "computational form", where the shorter expression is on the RHS (right-hand side). An example is df-2 12045 versus 1p1e2 12107. We do not need 1p1e2 12107, but because it occurs "naturally" in computations, it can be useful to have it directly, together with a uniform set of 1-digit operations like 1p2e3 12125, etc. In most cases, we do not need both a definitional and a computational forms. A definitional form would favor consistency with genuine definitions, while a computational form is often more natural. The situation is similar with biconditionals in propositional calculus: see for instance pm4.24 564 and anidm 565, while other biconditionals generally appear in a single form (either definitional, but more often computational). In the present case, the equality is important enough that both abid1 2882 and abid2 2883 are in set.mm. (Contributed by NM, 26-Dec-1993.) (Revised by BJ, 10-Nov-2020.) |
⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | ||
Theorem | abid2 2883* | A simplification of class abstraction. Commuted form of abid1 2882. See comments there. (Contributed by NM, 26-Dec-1993.) |
⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | ||
Theorem | clelab 2884* | Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) Avoid ax-11 2155, see sbc5ALT 3746 for more details. (Revised by SN, 2-Sep-2024.) |
⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | ||
Theorem | clelabOLD 2885* | Obsolete version of clelab 2884 as of 2-Sep-2024. (Contributed by NM, 23-Dec-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | ||
Theorem | clabel 2886* | Membership of a class abstraction in another class. (Contributed by NM, 17-Jan-2006.) |
⊢ ({𝑥 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) | ||
Theorem | sbab 2887* | The right-hand side of the second equality is a way of representing proper substitution of 𝑦 for 𝑥 into a class variable. (Contributed by NM, 14-Sep-2003.) |
⊢ (𝑥 = 𝑦 → 𝐴 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐴}) | ||
Syntax | wnfc 2888 | Extend wff definition to include the not-free predicate for classes. |
wff Ⅎ𝑥𝐴 | ||
Theorem | nfcjust 2889* | Justification theorem for df-nfc 2890. (Contributed by Mario Carneiro, 13-Oct-2016.) |
⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) | ||
Definition | df-nfc 2890* | Define the not-free predicate for classes. This is read "𝑥 is not free in 𝐴". Not-free means that the value of 𝑥 cannot affect the value of 𝐴, e.g., any occurrence of 𝑥 in 𝐴 is effectively bound by a "for all" or something that expands to one (such as "there exists"). It is defined in terms of the not-free predicate df-nf 1787 for wffs; see that definition for more information. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | ||
Theorem | nfci 2891* | Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 ⇒ ⊢ Ⅎ𝑥𝐴 | ||
Theorem | nfcii 2892* | Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) ⇒ ⊢ Ⅎ𝑥𝐴 | ||
Theorem | nfcr 2893* | Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Drop ax-12 2172 but use ax-8 2109, df-clel 2817, and avoid a DV condition on 𝑦, 𝐴. (Revised by SN, 3-Jun-2024.) |
⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | ||
Theorem | nfcrALT 2894* | Alternate version of nfcr 2893. Avoids ax-8 2109 but uses ax-12 2172. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | ||
Theorem | nfcri 2895* | Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2138, ax-11 2155. (Revised by Gino Giotto, 23-May-2024.) Avoid ax-12 2172 (adopting Wolf Lammen's 13-May-2023 proof). (Revised by SN, 3-Jun-2024.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | ||
Theorem | nfcd 2896* | Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥𝐴) | ||
Theorem | nfcrd 2897* | Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) | ||
Theorem | nfcriOLD 2898* | Obsolete version of nfcri 2895 as of 3-Jun-2024. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2138, ax-11 2155. (Revised by Gino Giotto, 23-May-2024.) Avoid ax-12 2172. (Revised by SN, 26-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | ||
Theorem | nfcriOLDOLD 2899* | Obsolete version of nfcri 2895 as of 26-May-2024. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2138, ax-11 2155. (Revised by Gino Giotto, 23-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | ||
Theorem | nfcrii 2900* | Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2138, ax-11 2155. (Revised by Gino Giotto, 23-May-2024.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |