![]() |
Metamath
Proof Explorer Theorem List (p. 29 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30438) |
![]() (30439-31961) |
![]() (31962-47939) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | abbid 2801 | Equivalent wff's yield equal class abstractions (deduction form, with nonfreeness hypothesis). (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) Avoid ax-10 2135 and ax-11 2152. (Revised by Wolf Lammen, 6-May-2023.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) | ||
Theorem | abbib 2802 | Equal class abstractions require equivalent formulas, and conversely. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-8 2106 and df-clel 2808 (by avoiding use of cleqh 2861). (Revised by BJ, 23-Jun-2019.) Definitial form. (Revised by Wolf Lammen, 23-Feb-2025.) |
⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 ↔ 𝜓)) | ||
Theorem | cbvabv 2803* | Rule used to change bound variables, using implicit substitution. Version of cbvab 2806 with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2152 and ax-13 2369. (Revised by Steven Nguyen, 4-Dec-2022.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | ||
Theorem | cbvabw 2804* | Rule used to change bound variables, using implicit substitution. Version of cbvab 2806 with a disjoint variable condition, which does not require ax-10 2135, ax-13 2369. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Gino Giotto, 23-May-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | ||
Theorem | cbvabwOLD 2805* | Obsolete version of cbvabw 2804 as of 23-May-2024. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | ||
Theorem | cbvab 2806 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2369. Usage of the weaker cbvabw 2804 and cbvabv 2803 are preferred. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | ||
Theorem | eqabbw 2807* | Version of eqabb 2871 using implicit substitution, which requires fewer axioms. (Contributed by GG and AV, 18-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝜓)) | ||
Definition | df-clel 2808* |
Define the membership connective between classes. Theorem 6.3 of
[Quine] p. 41, or Proposition 4.6 of [TakeutiZaring] p. 13, which we
adopt as a definition. See these references for its metalogical
justification.
The hypotheses express that all instances of the conclusion where class variables are replaced with setvar variables hold. Therefore, this definition merely extends to class variables something that is true for setvar variables, hence is conservative. This is only a proof sketch of conservativity; for details see Appendix of [Levy] p. 357. This is the reason why we call this axiomatic statement a "definition", even though it does not have the usual form of a definition. If we required a definition to have the usual form, we would call df-clel 2808 an axiom. See also comments under df-clab 2708, df-cleq 2722, and eqabb 2871. Alternate characterizations of 𝐴 ∈ 𝐵 when either 𝐴 or 𝐵 is a set are given by clel2g 3646, clel3g 3649, and clel4g 3651. This is called the "axiom of membership" by [Levy] p. 338, who treats the theory of classes as an extralogical extension to our logic and set theory axioms. While the three class definitions df-clab 2708, df-cleq 2722, and df-clel 2808 are eliminable and conservative and thus meet the requirements for sound definitions, they are technically axioms in that they do not satisfy the requirements for the current definition checker. The proofs of conservativity require external justification that is beyond the scope of the definition checker. For a general discussion of the theory of classes, see mmset.html#class 2808. (Contributed by NM, 26-May-1993.) (Revised by BJ, 27-Jun-2019.) |
⊢ (𝑦 ∈ 𝑧 ↔ ∃𝑢(𝑢 = 𝑦 ∧ 𝑢 ∈ 𝑧)) & ⊢ (𝑡 ∈ 𝑡 ↔ ∃𝑣(𝑣 = 𝑡 ∧ 𝑣 ∈ 𝑡)) ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | ||
Theorem | dfclel 2809* | Characterization of the elements of a class. (Contributed by BJ, 27-Jun-2019.) |
⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | ||
Theorem | elex2 2810* | If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) Avoid ax-9 2114, ax-ext 2701, df-clab 2708. (Revised by Wolf Lammen, 30-Nov-2024.) |
⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) | ||
Theorem | issetlem 2811* | Lemma for elisset 2813 and isset 3485. (Contributed by NM, 26-May-1993.) Extract from the proof of isset 3485. (Revised by WL, 2-Feb-2025.) |
⊢ 𝑥 ∈ 𝑉 ⇒ ⊢ (𝐴 ∈ 𝑉 ↔ ∃𝑥 𝑥 = 𝐴) | ||
Theorem | elissetv 2812* | An element of a class exists. Version of elisset 2813 with a disjoint variable condition on 𝑉, 𝑥, avoiding df-clab 2708. Prefer its use over elisset 2813 when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by BJ, 14-Sep-2019.) |
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | ||
Theorem | elisset 2813* | An element of a class exists. Use elissetv 2812 instead when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by NM, 1-May-1995.) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019.) |
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | ||
Theorem | eleq1w 2814 |
Weaker version of eleq1 2819 (but more general than elequ1 2111) not
depending on ax-ext 2701 nor df-cleq 2722.
Note that this provides a proof of ax-8 2106 from Tarski's FOL and dfclel 2809 (simply consider an instance where 𝐴 is replaced by a setvar and deduce the forward implication by biimpd 228), which shows that dfclel 2809 is too powerful to be used as a definition instead of df-clel 2808. (Contributed by BJ, 24-Jun-2019.) |
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | ||
Theorem | eleq2w 2815 | Weaker version of eleq2 2820 (but more general than elequ2 2119) not depending on ax-ext 2701 nor df-cleq 2722. (Contributed by BJ, 29-Sep-2019.) |
⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) | ||
Theorem | eleq1d 2816 | Deduction from equality to equivalence of membership. (Contributed by NM, 21-Jun-1993.) Allow shortening of eleq1 2819. (Revised by Wolf Lammen, 20-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | ||
Theorem | eleq2d 2817 | Deduction from equality to equivalence of membership. (Contributed by NM, 27-Dec-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) | ||
Theorem | eleq2dALT 2818 | Alternate proof of eleq2d 2817, shorter at the expense of requiring ax-12 2169. (Contributed by NM, 27-Dec-1993.) (Revised by Wolf Lammen, 20-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) | ||
Theorem | eleq1 2819 | Equality implies equivalence of membership. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | ||
Theorem | eleq2 2820 | Equality implies equivalence of membership. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) | ||
Theorem | eleq12 2821 | Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) | ||
Theorem | eleq1i 2822 | Inference from equality to equivalence of membership. (Contributed by NM, 21-Jun-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) | ||
Theorem | eleq2i 2823 | Inference from equality to equivalence of membership. (Contributed by NM, 26-May-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵) | ||
Theorem | eleq12i 2824 | Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷) | ||
Theorem | eleq12d 2825 | Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) | ||
Theorem | eleq1a 2826 | A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) | ||
Theorem | eqeltri 2827 | Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐵 ∈ 𝐶 ⇒ ⊢ 𝐴 ∈ 𝐶 | ||
Theorem | eqeltrri 2828 | Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ 𝐵 ∈ 𝐶 | ||
Theorem | eleqtri 2829 | Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐴 ∈ 𝐶 | ||
Theorem | eleqtrri 2830 | Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐶 = 𝐵 ⇒ ⊢ 𝐴 ∈ 𝐶 | ||
Theorem | eqeltrd 2831 | Substitution of equal classes into membership relation, deduction form. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eqeltrrd 2832 | Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝐶) | ||
Theorem | eleqtrd 2833 | Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrrd 2834 | Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eqeltrid 2835 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eqeltrrid 2836 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ 𝐵 = 𝐴 & ⊢ (𝜑 → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrid 2837 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrrid 2838 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eqeltrdi 2839 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐵 ∈ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eqeltrrdi 2840 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ (𝜑 → 𝐵 = 𝐴) & ⊢ 𝐵 ∈ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrdi 2841 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝐵 = 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrrdi 2842 | A membership and equality inference. (Contributed by NM, 24-Apr-2005.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝐶 = 𝐵 ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | 3eltr3i 2843 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ 𝐶 ∈ 𝐷 | ||
Theorem | 3eltr4i 2844 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ 𝐶 ∈ 𝐷 | ||
Theorem | 3eltr3d 2845 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐷) | ||
Theorem | 3eltr4d 2846 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐷) | ||
Theorem | 3eltr3g 2847 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐷) | ||
Theorem | 3eltr4g 2848 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐷) | ||
Theorem | eleq2s 2849 | Substitution of equal classes into a membership antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝐴 ∈ 𝐵 → 𝜑) & ⊢ 𝐶 = 𝐵 ⇒ ⊢ (𝐴 ∈ 𝐶 → 𝜑) | ||
Theorem | eqneltri 2850 | If a class is not an element of another class, an equal class is also not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ 𝐴 = 𝐵 & ⊢ ¬ 𝐵 ∈ 𝐶 ⇒ ⊢ ¬ 𝐴 ∈ 𝐶 | ||
Theorem | eqneltrd 2851 | If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) | ||
Theorem | eqneltrrd 2852 | If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | ||
Theorem | neleqtrd 2853 | If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | ||
Theorem | neleqtrrd 2854 | If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | ||
Theorem | nelneq 2855 | A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.) |
⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) | ||
Theorem | nelneq2 2856 | A way of showing two classes are not equal. (Contributed by NM, 12-Jan-2002.) |
⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) | ||
Theorem | eqsb1 2857* | Substitution for the left-hand side in an equality. Class version of equsb3 2099. (Contributed by Rodolfo Medina, 28-Apr-2010.) |
⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴) | ||
Theorem | clelsb1 2858* | Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2112). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | ||
Theorem | clelsb2 2859* | Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2121). (Contributed by Jim Kingdon, 22-Nov-2018.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 24-Nov-2024.) |
⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) | ||
Theorem | clelsb2OLD 2860* | Obsolete version of clelsb2 2859 as of 24-Nov-2024.) (Contributed by Jim Kingdon, 22-Nov-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) | ||
Theorem | cleqh 2861* | Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq 2723. See also cleqf 2932. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 14-Nov-2019.) Remove dependency on ax-13 2369. (Revised by BJ, 30-Nov-2020.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) & ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) ⇒ ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | ||
Theorem | hbxfreq 2862 | A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfrbi 1825 for equivalence version. (Contributed by NM, 21-Aug-2007.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) ⇒ ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | ||
Theorem | hblem 2863* | Change the free variable of a hypothesis builder. (Contributed by NM, 21-Jun-1993.) (Revised by Andrew Salmon, 11-Jul-2011.) Add disjoint variable condition to avoid ax-13 2369. See hblemg 2864 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) ⇒ ⊢ (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) | ||
Theorem | hblemg 2864* | Change the free variable of a hypothesis builder. Usage of this theorem is discouraged because it depends on ax-13 2369. See hblem 2863 for a version with more disjoint variable conditions, but not requiring ax-13 2369. (Contributed by NM, 21-Jun-1993.) (Revised by Andrew Salmon, 11-Jul-2011.) (New usage is discouraged.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) ⇒ ⊢ (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) | ||
Theorem | eqabdv 2865* | Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) Avoid ax-11 2152. (Revised by Wolf Lammen, 6-May-2023.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) ⇒ ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) | ||
Theorem | eqabcdv 2866* | Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) | ||
Theorem | eqabi 2867* | Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 26-May-1993.) Avoid ax-11 2152. (Revised by Wolf Lammen, 6-May-2023.) |
⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) ⇒ ⊢ 𝐴 = {𝑥 ∣ 𝜑} | ||
Theorem | abid1 2868* |
Every class is equal to a class abstraction (the class of sets belonging
to it). Theorem 5.2 of [Quine] p. 35.
This is a generalization to
classes of cvjust 2724. The proof does not rely on cvjust 2724, so cvjust 2724
could be proved as a special instance of it. Note however that abid1 2868
necessarily relies on df-clel 2808, whereas cvjust 2724 does not.
This theorem requires ax-ext 2701, df-clab 2708, df-cleq 2722, df-clel 2808, but to prove that any specific class term not containing class variables is a setvar or is equal to a class abstraction does not require these $a-statements. This last fact is a metatheorem, consequence of the fact that the only $a-statements with typecode class are cv 1538, cab 2707, and statements corresponding to defined class constructors. Note on the simultaneous presence in set.mm of this abid1 2868 and its commuted form abid2 2869: It is rare that two forms so closely related both appear in set.mm. Indeed, such equalities are generally used in later proofs as parts of transitive inferences, and with the many variants of eqtri 2758 (search for *eqtr*), it would be rare that either one would shorten a proof compared to the other. There is typically a choice between what we call a "definitional form", where the shorter expression is on the LHS (left-hand side), and a "computational form", where the shorter expression is on the RHS (right-hand side). An example is df-2 12279 versus 1p1e2 12341. We do not need 1p1e2 12341, but because it occurs "naturally" in computations, it can be useful to have it directly, together with a uniform set of 1-digit operations like 1p2e3 12359, etc. In most cases, we do not need both a definitional and a computational forms. A definitional form would favor consistency with genuine definitions, while a computational form is often more natural. The situation is similar with biconditionals in propositional calculus: see for instance pm4.24 562 and anidm 563, while other biconditionals generally appear in a single form (either definitional, but more often computational). In the present case, the equality is important enough that both abid1 2868 and abid2 2869 are in set.mm. (Contributed by NM, 26-Dec-1993.) (Revised by BJ, 10-Nov-2020.) |
⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | ||
Theorem | abid2 2869* | A simplification of class abstraction. Commuted form of abid1 2868. See comments there. (Contributed by NM, 26-Dec-1993.) |
⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | ||
Theorem | eqab 2870* | One direction of eqabb 2871 is provable from fewer axioms. (Contributed by Wolf Lammen, 13-Feb-2025.) |
⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑) → 𝐴 = {𝑥 ∣ 𝜑}) | ||
Theorem | eqabb 2871* |
Equality of a class variable and a class abstraction (also called a
class builder). Theorem 5.1 of [Quine]
p. 34. This theorem shows the
relationship between expressions with class abstractions and expressions
with class variables. Note that abbib 2802 and its relatives are among
those useful for converting theorems with class variables to equivalent
theorems with wff variables, by first substituting a class abstraction
for each class variable.
Class variables can always be eliminated from a theorem to result in an equivalent theorem with wff variables, and vice-versa. The idea is roughly as follows. To convert a theorem with a wff variable 𝜑 (that has a free variable 𝑥) to a theorem with a class variable 𝐴, we substitute 𝑥 ∈ 𝐴 for 𝜑 throughout and simplify, where 𝐴 is a new class variable not already in the wff. An example is the conversion of zfauscl 5300 to inex1 5316 (look at the instance of zfauscl 5300 that occurs in the proof of inex1 5316). Conversely, to convert a theorem with a class variable 𝐴 to one with 𝜑, we substitute {𝑥 ∣ 𝜑} for 𝐴 throughout and simplify, where 𝑥 and 𝜑 are new setvar and wff variables not already in the wff. Examples include dfsymdif2 4249 and cp 9888; the latter derives a formula containing wff variables from substitution instances of the class variables in its equivalent formulation cplem2 9887. For more information on class variables, see Quine pp. 15-21 and/or Takeuti and Zaring pp. 10-13. Usage of eqabbw 2807 is preferred since it requires fewer axioms. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 12-Feb-2025.) |
⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) | ||
Theorem | eqabbOLD 2872* | Obsolete version of eqabb 2871 as of 12-Feb-2025. (Contributed by NM, 26-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) | ||
Theorem | eqabcb 2873* | Equality of a class variable and a class abstraction. Commuted form of eqabb 2871. (Contributed by NM, 20-Aug-1993.) |
⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ ∀𝑥(𝜑 ↔ 𝑥 ∈ 𝐴)) | ||
Theorem | eqabrd 2874 | Equality of a class variable and a class abstraction (deduction form of eqabb 2871). (Contributed by NM, 16-Nov-1995.) |
⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) | ||
Theorem | eqabri 2875 | Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
⊢ 𝐴 = {𝑥 ∣ 𝜑} ⇒ ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | ||
Theorem | eqabcri 2876 | Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
⊢ {𝑥 ∣ 𝜑} = 𝐴 ⇒ ⊢ (𝜑 ↔ 𝑥 ∈ 𝐴) | ||
Theorem | clelab 2877* | Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) Avoid ax-11 2152, see sbc5ALT 3805 for more details. (Revised by SN, 2-Sep-2024.) |
⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | ||
Theorem | clelabOLD 2878* | Obsolete version of clelab 2877 as of 2-Sep-2024. (Contributed by NM, 23-Dec-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | ||
Theorem | clabel 2879* | Membership of a class abstraction in another class. (Contributed by NM, 17-Jan-2006.) |
⊢ ({𝑥 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) | ||
Theorem | sbab 2880* | The right-hand side of the second equality is a way of representing proper substitution of 𝑦 for 𝑥 into a class variable. (Contributed by NM, 14-Sep-2003.) |
⊢ (𝑥 = 𝑦 → 𝐴 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐴}) | ||
Syntax | wnfc 2881 | Extend wff definition to include the not-free predicate for classes. |
wff Ⅎ𝑥𝐴 | ||
Theorem | nfcjust 2882* | Justification theorem for df-nfc 2883. (Contributed by Mario Carneiro, 13-Oct-2016.) |
⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) | ||
Definition | df-nfc 2883* | Define the not-free predicate for classes. This is read "𝑥 is not free in 𝐴". Not-free means that the value of 𝑥 cannot affect the value of 𝐴, e.g., any occurrence of 𝑥 in 𝐴 is effectively bound by a "for all" or something that expands to one (such as "there exists"). It is defined in terms of the not-free predicate df-nf 1784 for wffs; see that definition for more information. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | ||
Theorem | nfci 2884* | Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 ⇒ ⊢ Ⅎ𝑥𝐴 | ||
Theorem | nfcii 2885* | Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) ⇒ ⊢ Ⅎ𝑥𝐴 | ||
Theorem | nfcr 2886* | Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Drop ax-12 2169 but use ax-8 2106, df-clel 2808, and avoid a DV condition on 𝑦, 𝐴. (Revised by SN, 3-Jun-2024.) |
⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | ||
Theorem | nfcrALT 2887* | Alternate version of nfcr 2886. Avoids ax-8 2106 but uses ax-12 2169. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | ||
Theorem | nfcri 2888* | Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2135, ax-11 2152. (Revised by Gino Giotto, 23-May-2024.) Avoid ax-12 2169 (adopting Wolf Lammen's 13-May-2023 proof). (Revised by SN, 3-Jun-2024.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | ||
Theorem | nfcd 2889* | Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥𝐴) | ||
Theorem | nfcrd 2890* | Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) | ||
Theorem | nfcriOLD 2891* | Obsolete version of nfcri 2888 as of 3-Jun-2024. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2135, ax-11 2152. (Revised by Gino Giotto, 23-May-2024.) Avoid ax-12 2169. (Revised by SN, 26-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | ||
Theorem | nfcriOLDOLD 2892* | Obsolete version of nfcri 2888 as of 26-May-2024. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2135, ax-11 2152. (Revised by Gino Giotto, 23-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | ||
Theorem | nfcrii 2893* | Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2135, ax-11 2152. (Revised by Gino Giotto, 23-May-2024.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | ||
Theorem | nfcriiOLD 2894* | Obsolete version of nfcrii 2893 as of 23-May-2024. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | ||
Theorem | nfcriOLDOLDOLD 2895* | Obsolete version of nfcri 2888 as of 23-May-2024. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | ||
Theorem | nfceqdf 2896 | An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.) Avoid ax-8 2106 and df-clel 2808. (Revised by WL and SN, 23-Aug-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵)) | ||
Theorem | nfceqdfOLD 2897 | Obsolete version of nfceqdf 2896 as of 23-Aug-2024. (Contributed by Mario Carneiro, 14-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵)) | ||
Theorem | nfceqi 2898 | Equality theorem for class not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) Avoid ax-12 2169. (Revised by Wolf Lammen, 19-Jun-2023.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) | ||
Theorem | nfcxfr 2899 | A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ 𝐴 = 𝐵 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥𝐴 | ||
Theorem | nfcxfrd 2900 | A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |