![]() |
Metamath
Proof Explorer Theorem List (p. 29 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | eq2tri 2801 | A compound transitive inference for class equality. (Contributed by NM, 22-Jan-2004.) |
⊢ (𝐴 = 𝐶 → 𝐷 = 𝐹) & ⊢ (𝐵 = 𝐷 → 𝐶 = 𝐺) ⇒ ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐹) ↔ (𝐵 = 𝐷 ∧ 𝐴 = 𝐺)) | ||
Theorem | iseqsetvlem 2802* | Lemma for iseqsetv-cleq 2803. (Contributed by Wolf Lammen, 17-Aug-2025.) (Proof modification is discouraged.) |
⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑧 𝑧 = 𝐴) | ||
Theorem | iseqsetv-cleq 2803* |
Alternate proof of iseqsetv-clel 2817. The expression ∃𝑥𝑥 = 𝐴 does
not depend on a particular choice of the set variable. The proof here
avoids df-clab 2712, df-clel 2813 and ax-8 2107, but instead is based on
ax-9 2115, ax-ext 2705 and df-cleq 2726. In particular it still accepts
𝑥
∈ 𝐴 being a
primitive syntax term, not assuming any specific
semantics (like elementhood in some form).
Use it in contexts where you want to avoid df-clab 2712, or you need df-cleq 2726 anyway. See the alternative version , not using df-cleq 2726 or ax-ext 2705 or ax-9 2115. (Contributed by Wolf Lammen, 6-Aug-2025.) (Proof modification is discouraged.) |
⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴) | ||
Theorem | abbi 2804 | Equivalent formulas yield equal class abstractions (closed form). This is the backward implication of abbib 2808, proved from fewer axioms, and hence is independently named. (Contributed by BJ and WL and SN, 20-Aug-2023.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | ||
Theorem | abbidv 2805* | Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 10-Aug-1993.) Avoid ax-12 2174, based on an idea of Steven Nguyen. (Revised by Wolf Lammen, 6-May-2023.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) | ||
Theorem | abbii 2806 | Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 26-May-1993.) Remove dependency on ax-10 2138, ax-11 2154, and ax-12 2174. (Revised by Steven Nguyen, 3-May-2023.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} | ||
Theorem | abbid 2807 | Equivalent wff's yield equal class abstractions (deduction form, with nonfreeness hypothesis). (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) Avoid ax-10 2138 and ax-11 2154. (Revised by Wolf Lammen, 6-May-2023.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) | ||
Theorem | abbib 2808 | Equal class abstractions require equivalent formulas, and conversely. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-8 2107 and df-clel 2813 (by avoiding use of cleqh 2868). (Revised by BJ, 23-Jun-2019.) Definitial form. (Revised by Wolf Lammen, 23-Feb-2025.) |
⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 ↔ 𝜓)) | ||
Theorem | cbvabv 2809* | Rule used to change bound variables, using implicit substitution. Version of cbvab 2811 with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2154 and ax-13 2374. (Revised by Steven Nguyen, 4-Dec-2022.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | ||
Theorem | cbvabw 2810* | Rule used to change bound variables, using implicit substitution. Version of cbvab 2811 with a disjoint variable condition, which does not require ax-10 2138, ax-13 2374. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by GG, 23-May-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | ||
Theorem | cbvab 2811 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. Usage of the weaker cbvabw 2810 and cbvabv 2809 are preferred. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | ||
Theorem | eqabbw 2812* | Version of eqabb 2878 using implicit substitution, which requires fewer axioms. (Contributed by GG and AV, 18-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝜓)) | ||
Definition | df-clel 2813* |
Define the membership connective between classes. Theorem 6.3 of
[Quine] p. 41, or Proposition 4.6 of [TakeutiZaring] p. 13, which we
adopt as a definition. See these references for its metalogical
justification.
The hypotheses express that all instances of the conclusion where class variables are replaced with setvar variables hold. Therefore, this definition merely extends to class variables something that is true for setvar variables, hence is conservative. This is only a proof sketch of conservativity; for details see Appendix of [Levy] p. 357. This is the reason why we call this axiomatic statement a "definition", even though it does not have the usual form of a definition. If we required a definition to have the usual form, we would call df-clel 2813 an axiom. See also comments under df-clab 2712, df-cleq 2726, and eqabb 2878. Alternate characterizations of 𝐴 ∈ 𝐵 when either 𝐴 or 𝐵 is a set are given by clel2g 3658, clel3g 3660, and clel4g 3662. This is called the "axiom of membership" by [Levy] p. 338, who treats the theory of classes as an extralogical extension to our logic and set theory axioms. While the three class definitions df-clab 2712, df-cleq 2726, and df-clel 2813 are eliminable and conservative and thus meet the requirements for sound definitions, they are technically axioms in that they do not satisfy the requirements for the current definition checker. The proofs of conservativity require external justification that is beyond the scope of the definition checker. For a general discussion of the theory of classes, see mmset.html#class 2813. (Contributed by NM, 26-May-1993.) (Revised by BJ, 27-Jun-2019.) |
⊢ (𝑦 ∈ 𝑧 ↔ ∃𝑢(𝑢 = 𝑦 ∧ 𝑢 ∈ 𝑧)) & ⊢ (𝑡 ∈ 𝑡 ↔ ∃𝑣(𝑣 = 𝑡 ∧ 𝑣 ∈ 𝑡)) ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | ||
Theorem | dfclel 2814* | Characterization of the elements of a class. (Contributed by BJ, 27-Jun-2019.) |
⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | ||
Theorem | elex2 2815* | If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) Avoid ax-9 2115, ax-ext 2705, df-clab 2712. (Revised by Wolf Lammen, 30-Nov-2024.) |
⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) | ||
Theorem | issettru 2816* | Weak version of isset 3491. (Contributed by BJ, 24-Apr-2024.) |
⊢ (∃𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ {𝑦 ∣ ⊤}) | ||
Theorem | iseqsetv-clel 2817* | Alternate proof of iseqsetv-cleq 2803. The expression ∃𝑥𝑥 = 𝐴 does not depend on a particular choice of the set variable. Use this theorem in contexts where df-cleq 2726 or ax-ext 2705 is not referenced elsewhere in your proof. It is proven from a specific implementation (class builder, axiom df-clab 2712) of the primitive term 𝑥 ∈ 𝐴. (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.) |
⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴) | ||
Theorem | issetlem 2818* | Lemma for elisset 2820 and isset 3491. (Contributed by NM, 26-May-1993.) Extract from the proof of isset 3491. (Revised by WL, 2-Feb-2025.) |
⊢ 𝑥 ∈ 𝑉 ⇒ ⊢ (𝐴 ∈ 𝑉 ↔ ∃𝑥 𝑥 = 𝐴) | ||
Theorem | elissetv 2819* | An element of a class exists. Version of elisset 2820 with a disjoint variable condition on 𝑉, 𝑥, avoiding df-clab 2712. Prefer its use over elisset 2820 when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by BJ, 14-Sep-2019.) |
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | ||
Theorem | elisset 2820* | An element of a class exists. Use elissetv 2819 instead when sufficient (for instance in usages where 𝑥 is a dummy variable). (Contributed by NM, 1-May-1995.) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019.) |
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | ||
Theorem | eleq1w 2821 |
Weaker version of eleq1 2826 (but more general than elequ1 2112) not
depending on ax-ext 2705 nor df-cleq 2726.
Note that this provides a proof of ax-8 2107 from Tarski's FOL and dfclel 2814 (simply consider an instance where 𝐴 is replaced by a setvar and deduce the forward implication by biimpd 229), which shows that dfclel 2814 is too powerful to be used as a definition instead of df-clel 2813. (Contributed by BJ, 24-Jun-2019.) |
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | ||
Theorem | eleq2w 2822 | Weaker version of eleq2 2827 (but more general than elequ2 2120) not depending on ax-ext 2705 nor df-cleq 2726. (Contributed by BJ, 29-Sep-2019.) |
⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) | ||
Theorem | eleq1d 2823 | Deduction from equality to equivalence of membership. (Contributed by NM, 21-Jun-1993.) Allow shortening of eleq1 2826. (Revised by Wolf Lammen, 20-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | ||
Theorem | eleq2d 2824 | Deduction from equality to equivalence of membership. (Contributed by NM, 27-Dec-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) | ||
Theorem | eleq2dALT 2825 | Alternate proof of eleq2d 2824, shorter at the expense of requiring ax-12 2174. (Contributed by NM, 27-Dec-1993.) (Revised by Wolf Lammen, 20-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) | ||
Theorem | eleq1 2826 | Equality implies equivalence of membership. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | ||
Theorem | eleq2 2827 | Equality implies equivalence of membership. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) | ||
Theorem | eleq12 2828 | Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) | ||
Theorem | eleq1i 2829 | Inference from equality to equivalence of membership. (Contributed by NM, 21-Jun-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) | ||
Theorem | eleq2i 2830 | Inference from equality to equivalence of membership. (Contributed by NM, 26-May-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵) | ||
Theorem | eleq12i 2831 | Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷) | ||
Theorem | eleq12d 2832 | Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) | ||
Theorem | eleq1a 2833 | A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) | ||
Theorem | eqeltri 2834 | Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐵 ∈ 𝐶 ⇒ ⊢ 𝐴 ∈ 𝐶 | ||
Theorem | eqeltrri 2835 | Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ 𝐵 ∈ 𝐶 | ||
Theorem | eleqtri 2836 | Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐴 ∈ 𝐶 | ||
Theorem | eleqtrri 2837 | Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐶 = 𝐵 ⇒ ⊢ 𝐴 ∈ 𝐶 | ||
Theorem | eqeltrd 2838 | Substitution of equal classes into membership relation, deduction form. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eqeltrrd 2839 | Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝐶) | ||
Theorem | eleqtrd 2840 | Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrrd 2841 | Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eqeltrid 2842 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eqeltrrid 2843 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ 𝐵 = 𝐴 & ⊢ (𝜑 → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrid 2844 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrrid 2845 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eqeltrdi 2846 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐵 ∈ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eqeltrrdi 2847 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ (𝜑 → 𝐵 = 𝐴) & ⊢ 𝐵 ∈ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrdi 2848 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝐵 = 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrrdi 2849 | A membership and equality inference. (Contributed by NM, 24-Apr-2005.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝐶 = 𝐵 ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | 3eltr3i 2850 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ 𝐶 ∈ 𝐷 | ||
Theorem | 3eltr4i 2851 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ 𝐶 ∈ 𝐷 | ||
Theorem | 3eltr3d 2852 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐷) | ||
Theorem | 3eltr4d 2853 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐷) | ||
Theorem | 3eltr3g 2854 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐷) | ||
Theorem | 3eltr4g 2855 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐷) | ||
Theorem | eleq2s 2856 | Substitution of equal classes into a membership antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝐴 ∈ 𝐵 → 𝜑) & ⊢ 𝐶 = 𝐵 ⇒ ⊢ (𝐴 ∈ 𝐶 → 𝜑) | ||
Theorem | eqneltri 2857 | If a class is not an element of another class, an equal class is also not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ 𝐴 = 𝐵 & ⊢ ¬ 𝐵 ∈ 𝐶 ⇒ ⊢ ¬ 𝐴 ∈ 𝐶 | ||
Theorem | eqneltrd 2858 | If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) | ||
Theorem | eqneltrrd 2859 | If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | ||
Theorem | neleqtrd 2860 | If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | ||
Theorem | neleqtrrd 2861 | If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | ||
Theorem | nelneq 2862 | A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.) |
⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) | ||
Theorem | nelneq2 2863 | A way of showing two classes are not equal. (Contributed by NM, 12-Jan-2002.) |
⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) | ||
Theorem | eqsb1 2864* | Substitution for the left-hand side in an equality. Class version of equsb3 2100. (Contributed by Rodolfo Medina, 28-Apr-2010.) |
⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴) | ||
Theorem | clelsb1 2865* | Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2113). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | ||
Theorem | clelsb2 2866* | Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2122). (Contributed by Jim Kingdon, 22-Nov-2018.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 24-Nov-2024.) |
⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) | ||
Theorem | clelsb2OLD 2867* | Obsolete version of clelsb2 2866 as of 24-Nov-2024.) (Contributed by Jim Kingdon, 22-Nov-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) | ||
Theorem | cleqh 2868* | Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq 2727. See also cleqf 2931. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 14-Nov-2019.) Remove dependency on ax-13 2374. (Revised by BJ, 30-Nov-2020.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) & ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) ⇒ ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | ||
Theorem | hbxfreq 2869 | A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfrbi 1821 for equivalence version. (Contributed by NM, 21-Aug-2007.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) ⇒ ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | ||
Theorem | hblem 2870* | Change the free variable of a hypothesis builder. (Contributed by NM, 21-Jun-1993.) (Revised by Andrew Salmon, 11-Jul-2011.) Add disjoint variable condition to avoid ax-13 2374. See hblemg 2871 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) ⇒ ⊢ (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) | ||
Theorem | hblemg 2871* | Change the free variable of a hypothesis builder. Usage of this theorem is discouraged because it depends on ax-13 2374. See hblem 2870 for a version with more disjoint variable conditions, but not requiring ax-13 2374. (Contributed by NM, 21-Jun-1993.) (Revised by Andrew Salmon, 11-Jul-2011.) (New usage is discouraged.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) ⇒ ⊢ (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) | ||
Theorem | eqabdv 2872* | Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) Avoid ax-11 2154. (Revised by Wolf Lammen, 6-May-2023.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) ⇒ ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) | ||
Theorem | eqabcdv 2873* | Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) | ||
Theorem | eqabi 2874* | Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 26-May-1993.) Avoid ax-11 2154. (Revised by Wolf Lammen, 6-May-2023.) |
⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) ⇒ ⊢ 𝐴 = {𝑥 ∣ 𝜑} | ||
Theorem | abid1 2875* |
Every class is equal to a class abstraction (the class of sets belonging
to it). Theorem 5.2 of [Quine] p. 35.
This is a generalization to
classes of cvjust 2728. The proof does not rely on cvjust 2728, so cvjust 2728
could be proved as a special instance of it. Note however that abid1 2875
necessarily relies on df-clel 2813, whereas cvjust 2728 does not.
This theorem requires ax-ext 2705, df-clab 2712, df-cleq 2726, df-clel 2813, but to prove that any specific class term not containing class variables is a setvar or is equal to a class abstraction does not require these $a-statements. This last fact is a metatheorem, consequence of the fact that the only $a-statements with typecode class are cv 1535, cab 2711, and statements corresponding to defined class constructors. Note on the simultaneous presence in set.mm of this abid1 2875 and its commuted form abid2 2876: It is rare that two forms so closely related both appear in set.mm. Indeed, such equalities are generally used in later proofs as parts of transitive inferences, and with the many variants of eqtri 2762 (search for *eqtr*), it would be rare that either one would shorten a proof compared to the other. There is typically a choice between what we call a "definitional form", where the shorter expression is on the LHS (left-hand side), and a "computational form", where the shorter expression is on the RHS (right-hand side). An example is df-2 12326 versus 1p1e2 12388. We do not need 1p1e2 12388, but because it occurs "naturally" in computations, it can be useful to have it directly, together with a uniform set of 1-digit operations like 1p2e3 12406, etc. In most cases, we do not need both a definitional and a computational forms. A definitional form would favor consistency with genuine definitions, while a computational form is often more natural. The situation is similar with biconditionals in propositional calculus: see for instance pm4.24 563 and anidm 564, while other biconditionals generally appear in a single form (either definitional, but more often computational). In the present case, the equality is important enough that both abid1 2875 and abid2 2876 are in set.mm. (Contributed by NM, 26-Dec-1993.) (Revised by BJ, 10-Nov-2020.) |
⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | ||
Theorem | abid2 2876* | A simplification of class abstraction. Commuted form of abid1 2875. See comments there. (Contributed by NM, 26-Dec-1993.) |
⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | ||
Theorem | eqab 2877* | One direction of eqabb 2878 is provable from fewer axioms. (Contributed by Wolf Lammen, 13-Feb-2025.) |
⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑) → 𝐴 = {𝑥 ∣ 𝜑}) | ||
Theorem | eqabb 2878* |
Equality of a class variable and a class abstraction (also called a
class builder). Theorem 5.1 of [Quine]
p. 34. This theorem shows the
relationship between expressions with class abstractions and expressions
with class variables. Note that abbib 2808 and its relatives are among
those useful for converting theorems with class variables to equivalent
theorems with wff variables, by first substituting a class abstraction
for each class variable.
Class variables can always be eliminated from a theorem to result in an equivalent theorem with wff variables, and vice-versa. The idea is roughly as follows. To convert a theorem with a wff variable 𝜑 (that has a free variable 𝑥) to a theorem with a class variable 𝐴, we substitute 𝑥 ∈ 𝐴 for 𝜑 throughout and simplify, where 𝐴 is a new class variable not already in the wff. An example is the conversion of zfauscl 5303 to inex1 5322 (look at the instance of zfauscl 5303 that occurs in the proof of inex1 5322). Conversely, to convert a theorem with a class variable 𝐴 to one with 𝜑, we substitute {𝑥 ∣ 𝜑} for 𝐴 throughout and simplify, where 𝑥 and 𝜑 are new setvar and wff variables not already in the wff. Examples include dfsymdif2 4266 and cp 9928; the latter derives a formula containing wff variables from substitution instances of the class variables in its equivalent formulation cplem2 9927. For more information on class variables, see Quine pp. 15-21 and/or Takeuti and Zaring pp. 10-13. Usage of eqabbw 2812 is preferred since it requires fewer axioms. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 12-Feb-2025.) |
⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) | ||
Theorem | eqabbOLD 2879* | Obsolete version of eqabb 2878 as of 12-Feb-2025. (Contributed by NM, 26-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) | ||
Theorem | eqabcb 2880* | Equality of a class variable and a class abstraction. Commuted form of eqabb 2878. (Contributed by NM, 20-Aug-1993.) |
⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ ∀𝑥(𝜑 ↔ 𝑥 ∈ 𝐴)) | ||
Theorem | eqabrd 2881 | Equality of a class variable and a class abstraction (deduction form of eqabb 2878). (Contributed by NM, 16-Nov-1995.) |
⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) | ||
Theorem | eqabri 2882 | Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
⊢ 𝐴 = {𝑥 ∣ 𝜑} ⇒ ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | ||
Theorem | eqabcri 2883 | Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
⊢ {𝑥 ∣ 𝜑} = 𝐴 ⇒ ⊢ (𝜑 ↔ 𝑥 ∈ 𝐴) | ||
Theorem | clelab 2884* | Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) Avoid ax-11 2154, see sbc5ALT 3819 for more details. (Revised by SN, 2-Sep-2024.) |
⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | ||
Theorem | clabel 2885* | Membership of a class abstraction in another class. (Contributed by NM, 17-Jan-2006.) |
⊢ ({𝑥 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) | ||
Theorem | sbab 2886* | The right-hand side of the second equality is a way of representing proper substitution of 𝑦 for 𝑥 into a class variable. (Contributed by NM, 14-Sep-2003.) |
⊢ (𝑥 = 𝑦 → 𝐴 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐴}) | ||
Syntax | wnfc 2887 | Extend wff definition to include the not-free predicate for classes. |
wff Ⅎ𝑥𝐴 | ||
Theorem | nfcjust 2888* | Justification theorem for df-nfc 2889. (Contributed by Mario Carneiro, 13-Oct-2016.) |
⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) | ||
Definition | df-nfc 2889* | Define the not-free predicate for classes. This is read "𝑥 is not free in 𝐴". Not-free means that the value of 𝑥 cannot affect the value of 𝐴, e.g., any occurrence of 𝑥 in 𝐴 is effectively bound by a "for all" or something that expands to one (such as "there exists"). It is defined in terms of the not-free predicate df-nf 1780 for wffs; see that definition for more information. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | ||
Theorem | nfci 2890* | Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 ⇒ ⊢ Ⅎ𝑥𝐴 | ||
Theorem | nfcii 2891* | Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) ⇒ ⊢ Ⅎ𝑥𝐴 | ||
Theorem | nfcr 2892* | Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Drop ax-12 2174 but use ax-8 2107, df-clel 2813, and avoid a DV condition on 𝑦, 𝐴. (Revised by SN, 3-Jun-2024.) |
⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | ||
Theorem | nfcrALT 2893* | Alternate version of nfcr 2892. Avoids ax-8 2107 but uses ax-12 2174. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | ||
Theorem | nfcri 2894* | Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2138, ax-11 2154. (Revised by GG, 23-May-2024.) Avoid ax-12 2174 (adopting Wolf Lammen's 13-May-2023 proof). (Revised by SN, 3-Jun-2024.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | ||
Theorem | nfcd 2895* | Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥𝐴) | ||
Theorem | nfcrd 2896* | Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) | ||
Theorem | nfcrii 2897* | Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2138, ax-11 2154. (Revised by GG, 23-May-2024.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | ||
Theorem | nfceqdf 2898 | An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.) Avoid ax-8 2107 and df-clel 2813. (Revised by WL and SN, 23-Aug-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵)) | ||
Theorem | nfceqi 2899 | Equality theorem for class not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) Avoid ax-12 2174. (Revised by Wolf Lammen, 19-Jun-2023.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) | ||
Theorem | nfcxfr 2900 | A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ 𝐴 = 𝐵 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥𝐴 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |