MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnelall Structured version   Visualization version   GIF version

Theorem elnelall 3059
Description: A contradiction concerning membership implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
Assertion
Ref Expression
elnelall (𝐴𝐵 → (𝐴𝐵𝜑))

Proof of Theorem elnelall
StepHypRef Expression
1 df-nel 3047 . 2 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
2 pm2.24 124 . 2 (𝐴𝐵 → (¬ 𝐴𝐵𝜑))
31, 2syl5bi 245 1 (𝐴𝐵 → (𝐴𝐵𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2110  wnel 3046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-nel 3047
This theorem is referenced by:  xnn0lenn0nn0  12835  ge2nprmge4  16258  afv2orxorb  44392
  Copyright terms: Public domain W3C validator