Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61danel | Structured version Visualization version GIF version |
Description: Deduction eliminating an elementhood in an antecedent. (Contributed by AV, 5-Dec-2021.) |
Ref | Expression |
---|---|
pm2.61danel.1 | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → 𝜓) |
pm2.61danel.2 | ⊢ ((𝜑 ∧ 𝐴 ∉ 𝐵) → 𝜓) |
Ref | Expression |
---|---|
pm2.61danel | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61danel.1 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → 𝜓) | |
2 | df-nel 3057 | . . 3 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
3 | pm2.61danel.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∉ 𝐵) → 𝜓) | |
4 | 2, 3 | sylan2br 598 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐵) → 𝜓) |
5 | 1, 4 | pm2.61dan 813 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 400 ∈ wcel 2112 ∉ wnel 3056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 401 df-nel 3057 |
This theorem is referenced by: clwwlknon1le1 27986 nsnlpligALT 28365 n0lpligALT 28367 |
Copyright terms: Public domain | W3C validator |