| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61danel | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating an elementhood in an antecedent. (Contributed by AV, 5-Dec-2021.) |
| Ref | Expression |
|---|---|
| pm2.61danel.1 | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → 𝜓) |
| pm2.61danel.2 | ⊢ ((𝜑 ∧ 𝐴 ∉ 𝐵) → 𝜓) |
| Ref | Expression |
|---|---|
| pm2.61danel | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61danel.1 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → 𝜓) | |
| 2 | df-nel 3046 | . . 3 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 3 | pm2.61danel.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∉ 𝐵) → 𝜓) | |
| 4 | 2, 3 | sylan2br 595 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ 𝐵) → 𝜓) |
| 5 | 1, 4 | pm2.61dan 812 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2107 ∉ wnel 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-nel 3046 |
| This theorem is referenced by: clwwlknon1le1 30121 nsnlpligALT 30502 n0lpligALT 30504 |
| Copyright terms: Public domain | W3C validator |