| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnn0lenn0nn0 | Structured version Visualization version GIF version | ||
| Description: An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| xnn0lenn0nn0 | ⊢ ((𝑀 ∈ ℕ0* ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 12459 | . . 3 ⊢ (𝑀 ∈ ℕ0* ↔ (𝑀 ∈ ℕ0 ∨ 𝑀 = +∞)) | |
| 2 | 2a1 28 | . . . 4 ⊢ (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0))) | |
| 3 | breq1 5095 | . . . . . . 7 ⊢ (𝑀 = +∞ → (𝑀 ≤ 𝑁 ↔ +∞ ≤ 𝑁)) | |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ +∞ ≤ 𝑁)) |
| 5 | nn0re 12393 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 6 | 5 | rexrd 11165 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ*) |
| 7 | xgepnf 13067 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℝ* → (+∞ ≤ 𝑁 ↔ 𝑁 = +∞)) | |
| 8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (+∞ ≤ 𝑁 ↔ 𝑁 = +∞)) |
| 9 | pnfnre 11156 | . . . . . . . . 9 ⊢ +∞ ∉ ℝ | |
| 10 | eleq1 2816 | . . . . . . . . . . 11 ⊢ (𝑁 = +∞ → (𝑁 ∈ ℕ0 ↔ +∞ ∈ ℕ0)) | |
| 11 | nn0re 12393 | . . . . . . . . . . . 12 ⊢ (+∞ ∈ ℕ0 → +∞ ∈ ℝ) | |
| 12 | pm2.24nel 3042 | . . . . . . . . . . . 12 ⊢ (+∞ ∈ ℝ → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0)) | |
| 13 | 11, 12 | syl 17 | . . . . . . . . . . 11 ⊢ (+∞ ∈ ℕ0 → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0)) |
| 14 | 10, 13 | biimtrdi 253 | . . . . . . . . . 10 ⊢ (𝑁 = +∞ → (𝑁 ∈ ℕ0 → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0))) |
| 15 | 14 | com13 88 | . . . . . . . . 9 ⊢ (+∞ ∉ ℝ → (𝑁 ∈ ℕ0 → (𝑁 = +∞ → 𝑀 ∈ ℕ0))) |
| 16 | 9, 15 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 = +∞ → 𝑀 ∈ ℕ0)) |
| 17 | 8, 16 | sylbid 240 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (+∞ ≤ 𝑁 → 𝑀 ∈ ℕ0)) |
| 18 | 17 | adantl 481 | . . . . . 6 ⊢ ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (+∞ ≤ 𝑁 → 𝑀 ∈ ℕ0)) |
| 19 | 4, 18 | sylbid 240 | . . . . 5 ⊢ ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0)) |
| 20 | 19 | ex 412 | . . . 4 ⊢ (𝑀 = +∞ → (𝑁 ∈ ℕ0 → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0))) |
| 21 | 2, 20 | jaoi 857 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∨ 𝑀 = +∞) → (𝑁 ∈ ℕ0 → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0))) |
| 22 | 1, 21 | sylbi 217 | . 2 ⊢ (𝑀 ∈ ℕ0* → (𝑁 ∈ ℕ0 → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0))) |
| 23 | 22 | 3imp 1110 | 1 ⊢ ((𝑀 ∈ ℕ0* ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 class class class wbr 5092 ℝcr 11008 +∞cpnf 11146 ℝ*cxr 11148 ≤ cle 11150 ℕ0cn0 12384 ℕ0*cxnn0 12457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-i2m1 11077 ax-1ne0 11078 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-nn 12129 df-n0 12385 df-xnn0 12458 |
| This theorem is referenced by: xnn0le2is012 13148 fldextrspunfld 33643 fldextrspundgdvdslem 33647 fldextrspundgdvds 33648 rtelextdg2 33694 |
| Copyright terms: Public domain | W3C validator |