![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnn0lenn0nn0 | Structured version Visualization version GIF version |
Description: An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.) |
Ref | Expression |
---|---|
xnn0lenn0nn0 | ⊢ ((𝑀 ∈ ℕ0* ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxnn0 12584 | . . 3 ⊢ (𝑀 ∈ ℕ0* ↔ (𝑀 ∈ ℕ0 ∨ 𝑀 = +∞)) | |
2 | 2a1 28 | . . . 4 ⊢ (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0))) | |
3 | breq1 5155 | . . . . . . 7 ⊢ (𝑀 = +∞ → (𝑀 ≤ 𝑁 ↔ +∞ ≤ 𝑁)) | |
4 | 3 | adantr 479 | . . . . . 6 ⊢ ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ +∞ ≤ 𝑁)) |
5 | nn0re 12519 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
6 | 5 | rexrd 11302 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ*) |
7 | xgepnf 13184 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℝ* → (+∞ ≤ 𝑁 ↔ 𝑁 = +∞)) | |
8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (+∞ ≤ 𝑁 ↔ 𝑁 = +∞)) |
9 | pnfnre 11293 | . . . . . . . . 9 ⊢ +∞ ∉ ℝ | |
10 | eleq1 2817 | . . . . . . . . . . 11 ⊢ (𝑁 = +∞ → (𝑁 ∈ ℕ0 ↔ +∞ ∈ ℕ0)) | |
11 | nn0re 12519 | . . . . . . . . . . . 12 ⊢ (+∞ ∈ ℕ0 → +∞ ∈ ℝ) | |
12 | pm2.24nel 3056 | . . . . . . . . . . . 12 ⊢ (+∞ ∈ ℝ → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0)) | |
13 | 11, 12 | syl 17 | . . . . . . . . . . 11 ⊢ (+∞ ∈ ℕ0 → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0)) |
14 | 10, 13 | biimtrdi 252 | . . . . . . . . . 10 ⊢ (𝑁 = +∞ → (𝑁 ∈ ℕ0 → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0))) |
15 | 14 | com13 88 | . . . . . . . . 9 ⊢ (+∞ ∉ ℝ → (𝑁 ∈ ℕ0 → (𝑁 = +∞ → 𝑀 ∈ ℕ0))) |
16 | 9, 15 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 = +∞ → 𝑀 ∈ ℕ0)) |
17 | 8, 16 | sylbid 239 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (+∞ ≤ 𝑁 → 𝑀 ∈ ℕ0)) |
18 | 17 | adantl 480 | . . . . . 6 ⊢ ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (+∞ ≤ 𝑁 → 𝑀 ∈ ℕ0)) |
19 | 4, 18 | sylbid 239 | . . . . 5 ⊢ ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0)) |
20 | 19 | ex 411 | . . . 4 ⊢ (𝑀 = +∞ → (𝑁 ∈ ℕ0 → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0))) |
21 | 2, 20 | jaoi 855 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∨ 𝑀 = +∞) → (𝑁 ∈ ℕ0 → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0))) |
22 | 1, 21 | sylbi 216 | . 2 ⊢ (𝑀 ∈ ℕ0* → (𝑁 ∈ ℕ0 → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0))) |
23 | 22 | 3imp 1108 | 1 ⊢ ((𝑀 ∈ ℕ0* ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∉ wnel 3043 class class class wbr 5152 ℝcr 11145 +∞cpnf 11283 ℝ*cxr 11285 ≤ cle 11287 ℕ0cn0 12510 ℕ0*cxnn0 12582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-i2m1 11214 ax-1ne0 11215 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-nn 12251 df-n0 12511 df-xnn0 12583 |
This theorem is referenced by: xnn0le2is012 13265 |
Copyright terms: Public domain | W3C validator |