MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0lenn0nn0 Structured version   Visualization version   GIF version

Theorem xnn0lenn0nn0 13270
Description: An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.)
Assertion
Ref Expression
xnn0lenn0nn0 ((𝑀 ∈ ℕ0*𝑁 ∈ ℕ0𝑀𝑁) → 𝑀 ∈ ℕ0)

Proof of Theorem xnn0lenn0nn0
StepHypRef Expression
1 elxnn0 12585 . . 3 (𝑀 ∈ ℕ0* ↔ (𝑀 ∈ ℕ0𝑀 = +∞))
2 2a1 28 . . . 4 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
3 breq1 5128 . . . . . . 7 (𝑀 = +∞ → (𝑀𝑁 ↔ +∞ ≤ 𝑁))
43adantr 480 . . . . . 6 ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ +∞ ≤ 𝑁))
5 nn0re 12519 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65rexrd 11294 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ*)
7 xgepnf 13190 . . . . . . . . 9 (𝑁 ∈ ℝ* → (+∞ ≤ 𝑁𝑁 = +∞))
86, 7syl 17 . . . . . . . 8 (𝑁 ∈ ℕ0 → (+∞ ≤ 𝑁𝑁 = +∞))
9 pnfnre 11285 . . . . . . . . 9 +∞ ∉ ℝ
10 eleq1 2821 . . . . . . . . . . 11 (𝑁 = +∞ → (𝑁 ∈ ℕ0 ↔ +∞ ∈ ℕ0))
11 nn0re 12519 . . . . . . . . . . . 12 (+∞ ∈ ℕ0 → +∞ ∈ ℝ)
12 pm2.24nel 3048 . . . . . . . . . . . 12 (+∞ ∈ ℝ → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0))
1311, 12syl 17 . . . . . . . . . . 11 (+∞ ∈ ℕ0 → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0))
1410, 13biimtrdi 253 . . . . . . . . . 10 (𝑁 = +∞ → (𝑁 ∈ ℕ0 → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0)))
1514com13 88 . . . . . . . . 9 (+∞ ∉ ℝ → (𝑁 ∈ ℕ0 → (𝑁 = +∞ → 𝑀 ∈ ℕ0)))
169, 15ax-mp 5 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 = +∞ → 𝑀 ∈ ℕ0))
178, 16sylbid 240 . . . . . . 7 (𝑁 ∈ ℕ0 → (+∞ ≤ 𝑁𝑀 ∈ ℕ0))
1817adantl 481 . . . . . 6 ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (+∞ ≤ 𝑁𝑀 ∈ ℕ0))
194, 18sylbid 240 . . . . 5 ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁𝑀 ∈ ℕ0))
2019ex 412 . . . 4 (𝑀 = +∞ → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
212, 20jaoi 857 . . 3 ((𝑀 ∈ ℕ0𝑀 = +∞) → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
221, 21sylbi 217 . 2 (𝑀 ∈ ℕ0* → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
23223imp 1110 1 ((𝑀 ∈ ℕ0*𝑁 ∈ ℕ0𝑀𝑁) → 𝑀 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wnel 3035   class class class wbr 5125  cr 11137  +∞cpnf 11275  *cxr 11277  cle 11279  0cn0 12510  0*cxnn0 12583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-i2m1 11206  ax-1ne0 11207  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-om 7871  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-nn 12250  df-n0 12511  df-xnn0 12584
This theorem is referenced by:  xnn0le2is012  13271  fldextrspunfld  33663  fldextrspundgdvdslem  33667  fldextrspundgdvds  33668  rtelextdg2  33705
  Copyright terms: Public domain W3C validator