MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ge2nprmge4 Structured version   Visualization version   GIF version

Theorem ge2nprmge4 16748
Description: A composite integer greater than or equal to 2 is greater than or equal to 4. (Contributed by AV, 5-Jun-2023.)
Assertion
Ref Expression
ge2nprmge4 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))

Proof of Theorem ge2nprmge4
StepHypRef Expression
1 eluz2b2 12986 . . 3 (𝑋 ∈ (ℤ‘2) ↔ (𝑋 ∈ ℕ ∧ 1 < 𝑋))
2 4z 12677 . . . . . . 7 4 ∈ ℤ
32a1i 11 . . . . . 6 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → 4 ∈ ℤ)
4 nnz 12660 . . . . . . 7 (𝑋 ∈ ℕ → 𝑋 ∈ ℤ)
54ad2antrr 725 . . . . . 6 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ ℤ)
6 1z 12673 . . . . . . . . . . 11 1 ∈ ℤ
7 zltp1le 12693 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (1 < 𝑋 ↔ (1 + 1) ≤ 𝑋))
86, 4, 7sylancr 586 . . . . . . . . . 10 (𝑋 ∈ ℕ → (1 < 𝑋 ↔ (1 + 1) ≤ 𝑋))
9 1p1e2 12418 . . . . . . . . . . 11 (1 + 1) = 2
109breq1i 5173 . . . . . . . . . 10 ((1 + 1) ≤ 𝑋 ↔ 2 ≤ 𝑋)
118, 10bitrdi 287 . . . . . . . . 9 (𝑋 ∈ ℕ → (1 < 𝑋 ↔ 2 ≤ 𝑋))
12 2re 12367 . . . . . . . . . . 11 2 ∈ ℝ
13 nnre 12300 . . . . . . . . . . 11 (𝑋 ∈ ℕ → 𝑋 ∈ ℝ)
14 leloe 11376 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 ≤ 𝑋 ↔ (2 < 𝑋 ∨ 2 = 𝑋)))
1512, 13, 14sylancr 586 . . . . . . . . . 10 (𝑋 ∈ ℕ → (2 ≤ 𝑋 ↔ (2 < 𝑋 ∨ 2 = 𝑋)))
16 2z 12675 . . . . . . . . . . . . . 14 2 ∈ ℤ
17 zltp1le 12693 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (2 < 𝑋 ↔ (2 + 1) ≤ 𝑋))
1816, 4, 17sylancr 586 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → (2 < 𝑋 ↔ (2 + 1) ≤ 𝑋))
19 2p1e3 12435 . . . . . . . . . . . . . 14 (2 + 1) = 3
2019breq1i 5173 . . . . . . . . . . . . 13 ((2 + 1) ≤ 𝑋 ↔ 3 ≤ 𝑋)
2118, 20bitrdi 287 . . . . . . . . . . . 12 (𝑋 ∈ ℕ → (2 < 𝑋 ↔ 3 ≤ 𝑋))
22 3re 12373 . . . . . . . . . . . . . 14 3 ∈ ℝ
23 leloe 11376 . . . . . . . . . . . . . 14 ((3 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (3 ≤ 𝑋 ↔ (3 < 𝑋 ∨ 3 = 𝑋)))
2422, 13, 23sylancr 586 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → (3 ≤ 𝑋 ↔ (3 < 𝑋 ∨ 3 = 𝑋)))
25 df-4 12358 . . . . . . . . . . . . . . . . 17 4 = (3 + 1)
26 3z 12676 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℤ
27 zltp1le 12693 . . . . . . . . . . . . . . . . . . 19 ((3 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (3 < 𝑋 ↔ (3 + 1) ≤ 𝑋))
2826, 4, 27sylancr 586 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ ℕ → (3 < 𝑋 ↔ (3 + 1) ≤ 𝑋))
2928biimpa 476 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ ℕ ∧ 3 < 𝑋) → (3 + 1) ≤ 𝑋)
3025, 29eqbrtrid 5201 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℕ ∧ 3 < 𝑋) → 4 ≤ 𝑋)
3130a1d 25 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℕ ∧ 3 < 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
3231ex 412 . . . . . . . . . . . . . 14 (𝑋 ∈ ℕ → (3 < 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
33 neleq1 3058 . . . . . . . . . . . . . . . . 17 (𝑋 = 3 → (𝑋 ∉ ℙ ↔ 3 ∉ ℙ))
3433eqcoms 2748 . . . . . . . . . . . . . . . 16 (3 = 𝑋 → (𝑋 ∉ ℙ ↔ 3 ∉ ℙ))
35 3prm 16741 . . . . . . . . . . . . . . . . 17 3 ∈ ℙ
36 pm2.24nel 3065 . . . . . . . . . . . . . . . . 17 (3 ∈ ℙ → (3 ∉ ℙ → 4 ≤ 𝑋))
3735, 36mp1i 13 . . . . . . . . . . . . . . . 16 (3 = 𝑋 → (3 ∉ ℙ → 4 ≤ 𝑋))
3834, 37sylbid 240 . . . . . . . . . . . . . . 15 (3 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
3938a1i 11 . . . . . . . . . . . . . 14 (𝑋 ∈ ℕ → (3 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
4032, 39jaod 858 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → ((3 < 𝑋 ∨ 3 = 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
4124, 40sylbid 240 . . . . . . . . . . . 12 (𝑋 ∈ ℕ → (3 ≤ 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
4221, 41sylbid 240 . . . . . . . . . . 11 (𝑋 ∈ ℕ → (2 < 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
43 neleq1 3058 . . . . . . . . . . . . . 14 (𝑋 = 2 → (𝑋 ∉ ℙ ↔ 2 ∉ ℙ))
4443eqcoms 2748 . . . . . . . . . . . . 13 (2 = 𝑋 → (𝑋 ∉ ℙ ↔ 2 ∉ ℙ))
45 2prm 16739 . . . . . . . . . . . . . 14 2 ∈ ℙ
46 pm2.24nel 3065 . . . . . . . . . . . . . 14 (2 ∈ ℙ → (2 ∉ ℙ → 4 ≤ 𝑋))
4745, 46mp1i 13 . . . . . . . . . . . . 13 (2 = 𝑋 → (2 ∉ ℙ → 4 ≤ 𝑋))
4844, 47sylbid 240 . . . . . . . . . . . 12 (2 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
4948a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℕ → (2 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5042, 49jaod 858 . . . . . . . . . 10 (𝑋 ∈ ℕ → ((2 < 𝑋 ∨ 2 = 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5115, 50sylbid 240 . . . . . . . . 9 (𝑋 ∈ ℕ → (2 ≤ 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5211, 51sylbid 240 . . . . . . . 8 (𝑋 ∈ ℕ → (1 < 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5352imp 406 . . . . . . 7 ((𝑋 ∈ ℕ ∧ 1 < 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
5453imp 406 . . . . . 6 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → 4 ≤ 𝑋)
553, 5, 543jca 1128 . . . . 5 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋))
5655ex 412 . . . 4 ((𝑋 ∈ ℕ ∧ 1 < 𝑋) → (𝑋 ∉ ℙ → (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋)))
57 eluz2 12909 . . . 4 (𝑋 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋))
5856, 57imbitrrdi 252 . . 3 ((𝑋 ∈ ℕ ∧ 1 < 𝑋) → (𝑋 ∉ ℙ → 𝑋 ∈ (ℤ‘4)))
591, 58sylbi 217 . 2 (𝑋 ∈ (ℤ‘2) → (𝑋 ∉ ℙ → 𝑋 ∈ (ℤ‘4)))
6059imp 406 1 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wnel 3052   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cn 12293  2c2 12348  3c3 12349  4c4 12350  cz 12639  cuz 12903  cprime 16718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-prm 16719
This theorem is referenced by:  fpprel2  47615
  Copyright terms: Public domain W3C validator