MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ge2nprmge4 Structured version   Visualization version   GIF version

Theorem ge2nprmge4 16735
Description: A composite integer greater than or equal to 2 is greater than or equal to 4. (Contributed by AV, 5-Jun-2023.)
Assertion
Ref Expression
ge2nprmge4 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))

Proof of Theorem ge2nprmge4
StepHypRef Expression
1 eluz2b2 12961 . . 3 (𝑋 ∈ (ℤ‘2) ↔ (𝑋 ∈ ℕ ∧ 1 < 𝑋))
2 4z 12649 . . . . . . 7 4 ∈ ℤ
32a1i 11 . . . . . 6 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → 4 ∈ ℤ)
4 nnz 12632 . . . . . . 7 (𝑋 ∈ ℕ → 𝑋 ∈ ℤ)
54ad2antrr 726 . . . . . 6 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ ℤ)
6 1z 12645 . . . . . . . . . . 11 1 ∈ ℤ
7 zltp1le 12665 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (1 < 𝑋 ↔ (1 + 1) ≤ 𝑋))
86, 4, 7sylancr 587 . . . . . . . . . 10 (𝑋 ∈ ℕ → (1 < 𝑋 ↔ (1 + 1) ≤ 𝑋))
9 1p1e2 12389 . . . . . . . . . . 11 (1 + 1) = 2
109breq1i 5155 . . . . . . . . . 10 ((1 + 1) ≤ 𝑋 ↔ 2 ≤ 𝑋)
118, 10bitrdi 287 . . . . . . . . 9 (𝑋 ∈ ℕ → (1 < 𝑋 ↔ 2 ≤ 𝑋))
12 2re 12338 . . . . . . . . . . 11 2 ∈ ℝ
13 nnre 12271 . . . . . . . . . . 11 (𝑋 ∈ ℕ → 𝑋 ∈ ℝ)
14 leloe 11345 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 ≤ 𝑋 ↔ (2 < 𝑋 ∨ 2 = 𝑋)))
1512, 13, 14sylancr 587 . . . . . . . . . 10 (𝑋 ∈ ℕ → (2 ≤ 𝑋 ↔ (2 < 𝑋 ∨ 2 = 𝑋)))
16 2z 12647 . . . . . . . . . . . . . 14 2 ∈ ℤ
17 zltp1le 12665 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (2 < 𝑋 ↔ (2 + 1) ≤ 𝑋))
1816, 4, 17sylancr 587 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → (2 < 𝑋 ↔ (2 + 1) ≤ 𝑋))
19 2p1e3 12406 . . . . . . . . . . . . . 14 (2 + 1) = 3
2019breq1i 5155 . . . . . . . . . . . . 13 ((2 + 1) ≤ 𝑋 ↔ 3 ≤ 𝑋)
2118, 20bitrdi 287 . . . . . . . . . . . 12 (𝑋 ∈ ℕ → (2 < 𝑋 ↔ 3 ≤ 𝑋))
22 3re 12344 . . . . . . . . . . . . . 14 3 ∈ ℝ
23 leloe 11345 . . . . . . . . . . . . . 14 ((3 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (3 ≤ 𝑋 ↔ (3 < 𝑋 ∨ 3 = 𝑋)))
2422, 13, 23sylancr 587 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → (3 ≤ 𝑋 ↔ (3 < 𝑋 ∨ 3 = 𝑋)))
25 df-4 12329 . . . . . . . . . . . . . . . . 17 4 = (3 + 1)
26 3z 12648 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℤ
27 zltp1le 12665 . . . . . . . . . . . . . . . . . . 19 ((3 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (3 < 𝑋 ↔ (3 + 1) ≤ 𝑋))
2826, 4, 27sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ ℕ → (3 < 𝑋 ↔ (3 + 1) ≤ 𝑋))
2928biimpa 476 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ ℕ ∧ 3 < 𝑋) → (3 + 1) ≤ 𝑋)
3025, 29eqbrtrid 5183 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℕ ∧ 3 < 𝑋) → 4 ≤ 𝑋)
3130a1d 25 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℕ ∧ 3 < 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
3231ex 412 . . . . . . . . . . . . . 14 (𝑋 ∈ ℕ → (3 < 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
33 neleq1 3050 . . . . . . . . . . . . . . . . 17 (𝑋 = 3 → (𝑋 ∉ ℙ ↔ 3 ∉ ℙ))
3433eqcoms 2743 . . . . . . . . . . . . . . . 16 (3 = 𝑋 → (𝑋 ∉ ℙ ↔ 3 ∉ ℙ))
35 3prm 16728 . . . . . . . . . . . . . . . . 17 3 ∈ ℙ
36 pm2.24nel 3057 . . . . . . . . . . . . . . . . 17 (3 ∈ ℙ → (3 ∉ ℙ → 4 ≤ 𝑋))
3735, 36mp1i 13 . . . . . . . . . . . . . . . 16 (3 = 𝑋 → (3 ∉ ℙ → 4 ≤ 𝑋))
3834, 37sylbid 240 . . . . . . . . . . . . . . 15 (3 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
3938a1i 11 . . . . . . . . . . . . . 14 (𝑋 ∈ ℕ → (3 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
4032, 39jaod 859 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → ((3 < 𝑋 ∨ 3 = 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
4124, 40sylbid 240 . . . . . . . . . . . 12 (𝑋 ∈ ℕ → (3 ≤ 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
4221, 41sylbid 240 . . . . . . . . . . 11 (𝑋 ∈ ℕ → (2 < 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
43 neleq1 3050 . . . . . . . . . . . . . 14 (𝑋 = 2 → (𝑋 ∉ ℙ ↔ 2 ∉ ℙ))
4443eqcoms 2743 . . . . . . . . . . . . 13 (2 = 𝑋 → (𝑋 ∉ ℙ ↔ 2 ∉ ℙ))
45 2prm 16726 . . . . . . . . . . . . . 14 2 ∈ ℙ
46 pm2.24nel 3057 . . . . . . . . . . . . . 14 (2 ∈ ℙ → (2 ∉ ℙ → 4 ≤ 𝑋))
4745, 46mp1i 13 . . . . . . . . . . . . 13 (2 = 𝑋 → (2 ∉ ℙ → 4 ≤ 𝑋))
4844, 47sylbid 240 . . . . . . . . . . . 12 (2 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
4948a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℕ → (2 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5042, 49jaod 859 . . . . . . . . . 10 (𝑋 ∈ ℕ → ((2 < 𝑋 ∨ 2 = 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5115, 50sylbid 240 . . . . . . . . 9 (𝑋 ∈ ℕ → (2 ≤ 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5211, 51sylbid 240 . . . . . . . 8 (𝑋 ∈ ℕ → (1 < 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5352imp 406 . . . . . . 7 ((𝑋 ∈ ℕ ∧ 1 < 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
5453imp 406 . . . . . 6 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → 4 ≤ 𝑋)
553, 5, 543jca 1127 . . . . 5 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋))
5655ex 412 . . . 4 ((𝑋 ∈ ℕ ∧ 1 < 𝑋) → (𝑋 ∉ ℙ → (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋)))
57 eluz2 12882 . . . 4 (𝑋 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋))
5856, 57imbitrrdi 252 . . 3 ((𝑋 ∈ ℕ ∧ 1 < 𝑋) → (𝑋 ∉ ℙ → 𝑋 ∈ (ℤ‘4)))
591, 58sylbi 217 . 2 (𝑋 ∈ (ℤ‘2) → (𝑋 ∉ ℙ → 𝑋 ∈ (ℤ‘4)))
6059imp 406 1 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wnel 3044   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cn 12264  2c2 12319  3c3 12320  4c4 12321  cz 12611  cuz 12876  cprime 16705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-prm 16706
This theorem is referenced by:  fpprel2  47666
  Copyright terms: Public domain W3C validator