MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ge2nprmge4 Structured version   Visualization version   GIF version

Theorem ge2nprmge4 16239
Description: A composite integer greater than or equal to 2 is greater than or equal to 4. (Contributed by AV, 5-Jun-2023.)
Assertion
Ref Expression
ge2nprmge4 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))

Proof of Theorem ge2nprmge4
StepHypRef Expression
1 eluz2b2 12500 . . 3 (𝑋 ∈ (ℤ‘2) ↔ (𝑋 ∈ ℕ ∧ 1 < 𝑋))
2 4z 12194 . . . . . . 7 4 ∈ ℤ
32a1i 11 . . . . . 6 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → 4 ∈ ℤ)
4 nnz 12182 . . . . . . 7 (𝑋 ∈ ℕ → 𝑋 ∈ ℤ)
54ad2antrr 726 . . . . . 6 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ ℤ)
6 1z 12190 . . . . . . . . . . 11 1 ∈ ℤ
7 zltp1le 12210 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (1 < 𝑋 ↔ (1 + 1) ≤ 𝑋))
86, 4, 7sylancr 590 . . . . . . . . . 10 (𝑋 ∈ ℕ → (1 < 𝑋 ↔ (1 + 1) ≤ 𝑋))
9 1p1e2 11938 . . . . . . . . . . 11 (1 + 1) = 2
109breq1i 5050 . . . . . . . . . 10 ((1 + 1) ≤ 𝑋 ↔ 2 ≤ 𝑋)
118, 10bitrdi 290 . . . . . . . . 9 (𝑋 ∈ ℕ → (1 < 𝑋 ↔ 2 ≤ 𝑋))
12 2re 11887 . . . . . . . . . . 11 2 ∈ ℝ
13 nnre 11820 . . . . . . . . . . 11 (𝑋 ∈ ℕ → 𝑋 ∈ ℝ)
14 leloe 10902 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 ≤ 𝑋 ↔ (2 < 𝑋 ∨ 2 = 𝑋)))
1512, 13, 14sylancr 590 . . . . . . . . . 10 (𝑋 ∈ ℕ → (2 ≤ 𝑋 ↔ (2 < 𝑋 ∨ 2 = 𝑋)))
16 2z 12192 . . . . . . . . . . . . . 14 2 ∈ ℤ
17 zltp1le 12210 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (2 < 𝑋 ↔ (2 + 1) ≤ 𝑋))
1816, 4, 17sylancr 590 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → (2 < 𝑋 ↔ (2 + 1) ≤ 𝑋))
19 2p1e3 11955 . . . . . . . . . . . . . 14 (2 + 1) = 3
2019breq1i 5050 . . . . . . . . . . . . 13 ((2 + 1) ≤ 𝑋 ↔ 3 ≤ 𝑋)
2118, 20bitrdi 290 . . . . . . . . . . . 12 (𝑋 ∈ ℕ → (2 < 𝑋 ↔ 3 ≤ 𝑋))
22 3re 11893 . . . . . . . . . . . . . 14 3 ∈ ℝ
23 leloe 10902 . . . . . . . . . . . . . 14 ((3 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (3 ≤ 𝑋 ↔ (3 < 𝑋 ∨ 3 = 𝑋)))
2422, 13, 23sylancr 590 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → (3 ≤ 𝑋 ↔ (3 < 𝑋 ∨ 3 = 𝑋)))
25 df-4 11878 . . . . . . . . . . . . . . . . 17 4 = (3 + 1)
26 3z 12193 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℤ
27 zltp1le 12210 . . . . . . . . . . . . . . . . . . 19 ((3 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (3 < 𝑋 ↔ (3 + 1) ≤ 𝑋))
2826, 4, 27sylancr 590 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ ℕ → (3 < 𝑋 ↔ (3 + 1) ≤ 𝑋))
2928biimpa 480 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ ℕ ∧ 3 < 𝑋) → (3 + 1) ≤ 𝑋)
3025, 29eqbrtrid 5078 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℕ ∧ 3 < 𝑋) → 4 ≤ 𝑋)
3130a1d 25 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℕ ∧ 3 < 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
3231ex 416 . . . . . . . . . . . . . 14 (𝑋 ∈ ℕ → (3 < 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
33 neleq1 3044 . . . . . . . . . . . . . . . . 17 (𝑋 = 3 → (𝑋 ∉ ℙ ↔ 3 ∉ ℙ))
3433eqcoms 2742 . . . . . . . . . . . . . . . 16 (3 = 𝑋 → (𝑋 ∉ ℙ ↔ 3 ∉ ℙ))
35 3prm 16232 . . . . . . . . . . . . . . . . 17 3 ∈ ℙ
36 elnelall 3052 . . . . . . . . . . . . . . . . 17 (3 ∈ ℙ → (3 ∉ ℙ → 4 ≤ 𝑋))
3735, 36mp1i 13 . . . . . . . . . . . . . . . 16 (3 = 𝑋 → (3 ∉ ℙ → 4 ≤ 𝑋))
3834, 37sylbid 243 . . . . . . . . . . . . . . 15 (3 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
3938a1i 11 . . . . . . . . . . . . . 14 (𝑋 ∈ ℕ → (3 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
4032, 39jaod 859 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → ((3 < 𝑋 ∨ 3 = 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
4124, 40sylbid 243 . . . . . . . . . . . 12 (𝑋 ∈ ℕ → (3 ≤ 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
4221, 41sylbid 243 . . . . . . . . . . 11 (𝑋 ∈ ℕ → (2 < 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
43 neleq1 3044 . . . . . . . . . . . . . 14 (𝑋 = 2 → (𝑋 ∉ ℙ ↔ 2 ∉ ℙ))
4443eqcoms 2742 . . . . . . . . . . . . 13 (2 = 𝑋 → (𝑋 ∉ ℙ ↔ 2 ∉ ℙ))
45 2prm 16230 . . . . . . . . . . . . . 14 2 ∈ ℙ
46 elnelall 3052 . . . . . . . . . . . . . 14 (2 ∈ ℙ → (2 ∉ ℙ → 4 ≤ 𝑋))
4745, 46mp1i 13 . . . . . . . . . . . . 13 (2 = 𝑋 → (2 ∉ ℙ → 4 ≤ 𝑋))
4844, 47sylbid 243 . . . . . . . . . . . 12 (2 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
4948a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℕ → (2 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5042, 49jaod 859 . . . . . . . . . 10 (𝑋 ∈ ℕ → ((2 < 𝑋 ∨ 2 = 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5115, 50sylbid 243 . . . . . . . . 9 (𝑋 ∈ ℕ → (2 ≤ 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5211, 51sylbid 243 . . . . . . . 8 (𝑋 ∈ ℕ → (1 < 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5352imp 410 . . . . . . 7 ((𝑋 ∈ ℕ ∧ 1 < 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
5453imp 410 . . . . . 6 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → 4 ≤ 𝑋)
553, 5, 543jca 1130 . . . . 5 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋))
5655ex 416 . . . 4 ((𝑋 ∈ ℕ ∧ 1 < 𝑋) → (𝑋 ∉ ℙ → (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋)))
57 eluz2 12427 . . . 4 (𝑋 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋))
5856, 57syl6ibr 255 . . 3 ((𝑋 ∈ ℕ ∧ 1 < 𝑋) → (𝑋 ∉ ℙ → 𝑋 ∈ (ℤ‘4)))
591, 58sylbi 220 . 2 (𝑋 ∈ (ℤ‘2) → (𝑋 ∉ ℙ → 𝑋 ∈ (ℤ‘4)))
6059imp 410 1 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  wnel 3039   class class class wbr 5043  cfv 6369  (class class class)co 7202  cr 10711  1c1 10713   + caddc 10715   < clt 10850  cle 10851  cn 11813  2c2 11868  3c3 11869  4c4 11870  cz 12159  cuz 12421  cprime 16209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-fz 13079  df-seq 13558  df-exp 13619  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-dvds 15797  df-prm 16210
This theorem is referenced by:  fpprel2  44820
  Copyright terms: Public domain W3C validator