Proof of Theorem ge2nprmge4
Step | Hyp | Ref
| Expression |
1 | | eluz2b2 12590 |
. . 3
⊢ (𝑋 ∈
(ℤ≥‘2) ↔ (𝑋 ∈ ℕ ∧ 1 < 𝑋)) |
2 | | 4z 12284 |
. . . . . . 7
⊢ 4 ∈
ℤ |
3 | 2 | a1i 11 |
. . . . . 6
⊢ (((𝑋 ∈ ℕ ∧ 1 <
𝑋) ∧ 𝑋 ∉ ℙ) → 4 ∈
ℤ) |
4 | | nnz 12272 |
. . . . . . 7
⊢ (𝑋 ∈ ℕ → 𝑋 ∈
ℤ) |
5 | 4 | ad2antrr 722 |
. . . . . 6
⊢ (((𝑋 ∈ ℕ ∧ 1 <
𝑋) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ ℤ) |
6 | | 1z 12280 |
. . . . . . . . . . 11
⊢ 1 ∈
ℤ |
7 | | zltp1le 12300 |
. . . . . . . . . . 11
⊢ ((1
∈ ℤ ∧ 𝑋
∈ ℤ) → (1 < 𝑋 ↔ (1 + 1) ≤ 𝑋)) |
8 | 6, 4, 7 | sylancr 586 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ℕ → (1 <
𝑋 ↔ (1 + 1) ≤ 𝑋)) |
9 | | 1p1e2 12028 |
. . . . . . . . . . 11
⊢ (1 + 1) =
2 |
10 | 9 | breq1i 5077 |
. . . . . . . . . 10
⊢ ((1 + 1)
≤ 𝑋 ↔ 2 ≤ 𝑋) |
11 | 8, 10 | bitrdi 286 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℕ → (1 <
𝑋 ↔ 2 ≤ 𝑋)) |
12 | | 2re 11977 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
13 | | nnre 11910 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℕ → 𝑋 ∈
ℝ) |
14 | | leloe 10992 |
. . . . . . . . . . 11
⊢ ((2
∈ ℝ ∧ 𝑋
∈ ℝ) → (2 ≤ 𝑋 ↔ (2 < 𝑋 ∨ 2 = 𝑋))) |
15 | 12, 13, 14 | sylancr 586 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ℕ → (2 ≤
𝑋 ↔ (2 < 𝑋 ∨ 2 = 𝑋))) |
16 | | 2z 12282 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℤ |
17 | | zltp1le 12300 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℤ ∧ 𝑋
∈ ℤ) → (2 < 𝑋 ↔ (2 + 1) ≤ 𝑋)) |
18 | 16, 4, 17 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℕ → (2 <
𝑋 ↔ (2 + 1) ≤ 𝑋)) |
19 | | 2p1e3 12045 |
. . . . . . . . . . . . . 14
⊢ (2 + 1) =
3 |
20 | 19 | breq1i 5077 |
. . . . . . . . . . . . 13
⊢ ((2 + 1)
≤ 𝑋 ↔ 3 ≤ 𝑋) |
21 | 18, 20 | bitrdi 286 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℕ → (2 <
𝑋 ↔ 3 ≤ 𝑋)) |
22 | | 3re 11983 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
ℝ |
23 | | leloe 10992 |
. . . . . . . . . . . . . 14
⊢ ((3
∈ ℝ ∧ 𝑋
∈ ℝ) → (3 ≤ 𝑋 ↔ (3 < 𝑋 ∨ 3 = 𝑋))) |
24 | 22, 13, 23 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℕ → (3 ≤
𝑋 ↔ (3 < 𝑋 ∨ 3 = 𝑋))) |
25 | | df-4 11968 |
. . . . . . . . . . . . . . . . 17
⊢ 4 = (3 +
1) |
26 | | 3z 12283 |
. . . . . . . . . . . . . . . . . . 19
⊢ 3 ∈
ℤ |
27 | | zltp1le 12300 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((3
∈ ℤ ∧ 𝑋
∈ ℤ) → (3 < 𝑋 ↔ (3 + 1) ≤ 𝑋)) |
28 | 26, 4, 27 | sylancr 586 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 ∈ ℕ → (3 <
𝑋 ↔ (3 + 1) ≤ 𝑋)) |
29 | 28 | biimpa 476 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋 ∈ ℕ ∧ 3 <
𝑋) → (3 + 1) ≤
𝑋) |
30 | 25, 29 | eqbrtrid 5105 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∈ ℕ ∧ 3 <
𝑋) → 4 ≤ 𝑋) |
31 | 30 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ ℕ ∧ 3 <
𝑋) → (𝑋 ∉ ℙ → 4 ≤
𝑋)) |
32 | 31 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℕ → (3 <
𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋))) |
33 | | neleq1 3053 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 = 3 → (𝑋 ∉ ℙ ↔ 3 ∉
ℙ)) |
34 | 33 | eqcoms 2746 |
. . . . . . . . . . . . . . . 16
⊢ (3 =
𝑋 → (𝑋 ∉ ℙ ↔ 3 ∉
ℙ)) |
35 | | 3prm 16327 |
. . . . . . . . . . . . . . . . 17
⊢ 3 ∈
ℙ |
36 | | elnelall 3061 |
. . . . . . . . . . . . . . . . 17
⊢ (3 ∈
ℙ → (3 ∉ ℙ → 4 ≤ 𝑋)) |
37 | 35, 36 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢ (3 =
𝑋 → (3 ∉ ℙ
→ 4 ≤ 𝑋)) |
38 | 34, 37 | sylbid 239 |
. . . . . . . . . . . . . . 15
⊢ (3 =
𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)) |
39 | 38 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℕ → (3 =
𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋))) |
40 | 32, 39 | jaod 855 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℕ → ((3 <
𝑋 ∨ 3 = 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋))) |
41 | 24, 40 | sylbid 239 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℕ → (3 ≤
𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋))) |
42 | 21, 41 | sylbid 239 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℕ → (2 <
𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋))) |
43 | | neleq1 3053 |
. . . . . . . . . . . . . 14
⊢ (𝑋 = 2 → (𝑋 ∉ ℙ ↔ 2 ∉
ℙ)) |
44 | 43 | eqcoms 2746 |
. . . . . . . . . . . . 13
⊢ (2 =
𝑋 → (𝑋 ∉ ℙ ↔ 2 ∉
ℙ)) |
45 | | 2prm 16325 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℙ |
46 | | elnelall 3061 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
ℙ → (2 ∉ ℙ → 4 ≤ 𝑋)) |
47 | 45, 46 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (2 =
𝑋 → (2 ∉ ℙ
→ 4 ≤ 𝑋)) |
48 | 44, 47 | sylbid 239 |
. . . . . . . . . . . 12
⊢ (2 =
𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)) |
49 | 48 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℕ → (2 =
𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋))) |
50 | 42, 49 | jaod 855 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ℕ → ((2 <
𝑋 ∨ 2 = 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋))) |
51 | 15, 50 | sylbid 239 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℕ → (2 ≤
𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋))) |
52 | 11, 51 | sylbid 239 |
. . . . . . . 8
⊢ (𝑋 ∈ ℕ → (1 <
𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋))) |
53 | 52 | imp 406 |
. . . . . . 7
⊢ ((𝑋 ∈ ℕ ∧ 1 <
𝑋) → (𝑋 ∉ ℙ → 4 ≤
𝑋)) |
54 | 53 | imp 406 |
. . . . . 6
⊢ (((𝑋 ∈ ℕ ∧ 1 <
𝑋) ∧ 𝑋 ∉ ℙ) → 4 ≤ 𝑋) |
55 | 3, 5, 54 | 3jca 1126 |
. . . . 5
⊢ (((𝑋 ∈ ℕ ∧ 1 <
𝑋) ∧ 𝑋 ∉ ℙ) → (4 ∈ ℤ
∧ 𝑋 ∈ ℤ
∧ 4 ≤ 𝑋)) |
56 | 55 | ex 412 |
. . . 4
⊢ ((𝑋 ∈ ℕ ∧ 1 <
𝑋) → (𝑋 ∉ ℙ → (4
∈ ℤ ∧ 𝑋
∈ ℤ ∧ 4 ≤ 𝑋))) |
57 | | eluz2 12517 |
. . . 4
⊢ (𝑋 ∈
(ℤ≥‘4) ↔ (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤
𝑋)) |
58 | 56, 57 | syl6ibr 251 |
. . 3
⊢ ((𝑋 ∈ ℕ ∧ 1 <
𝑋) → (𝑋 ∉ ℙ → 𝑋 ∈
(ℤ≥‘4))) |
59 | 1, 58 | sylbi 216 |
. 2
⊢ (𝑋 ∈
(ℤ≥‘2) → (𝑋 ∉ ℙ → 𝑋 ∈
(ℤ≥‘4))) |
60 | 59 | imp 406 |
1
⊢ ((𝑋 ∈
(ℤ≥‘2) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈
(ℤ≥‘4)) |