MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ge2nprmge4 Structured version   Visualization version   GIF version

Theorem ge2nprmge4 16725
Description: A composite integer greater than or equal to 2 is greater than or equal to 4. (Contributed by AV, 5-Jun-2023.)
Assertion
Ref Expression
ge2nprmge4 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))

Proof of Theorem ge2nprmge4
StepHypRef Expression
1 eluz2b2 12942 . . 3 (𝑋 ∈ (ℤ‘2) ↔ (𝑋 ∈ ℕ ∧ 1 < 𝑋))
2 4z 12631 . . . . . . 7 4 ∈ ℤ
32a1i 11 . . . . . 6 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → 4 ∈ ℤ)
4 nnz 12614 . . . . . . 7 (𝑋 ∈ ℕ → 𝑋 ∈ ℤ)
54ad2antrr 726 . . . . . 6 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ ℤ)
6 1z 12627 . . . . . . . . . . 11 1 ∈ ℤ
7 zltp1le 12647 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (1 < 𝑋 ↔ (1 + 1) ≤ 𝑋))
86, 4, 7sylancr 587 . . . . . . . . . 10 (𝑋 ∈ ℕ → (1 < 𝑋 ↔ (1 + 1) ≤ 𝑋))
9 1p1e2 12370 . . . . . . . . . . 11 (1 + 1) = 2
109breq1i 5131 . . . . . . . . . 10 ((1 + 1) ≤ 𝑋 ↔ 2 ≤ 𝑋)
118, 10bitrdi 287 . . . . . . . . 9 (𝑋 ∈ ℕ → (1 < 𝑋 ↔ 2 ≤ 𝑋))
12 2re 12319 . . . . . . . . . . 11 2 ∈ ℝ
13 nnre 12252 . . . . . . . . . . 11 (𝑋 ∈ ℕ → 𝑋 ∈ ℝ)
14 leloe 11326 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 ≤ 𝑋 ↔ (2 < 𝑋 ∨ 2 = 𝑋)))
1512, 13, 14sylancr 587 . . . . . . . . . 10 (𝑋 ∈ ℕ → (2 ≤ 𝑋 ↔ (2 < 𝑋 ∨ 2 = 𝑋)))
16 2z 12629 . . . . . . . . . . . . . 14 2 ∈ ℤ
17 zltp1le 12647 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (2 < 𝑋 ↔ (2 + 1) ≤ 𝑋))
1816, 4, 17sylancr 587 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → (2 < 𝑋 ↔ (2 + 1) ≤ 𝑋))
19 2p1e3 12387 . . . . . . . . . . . . . 14 (2 + 1) = 3
2019breq1i 5131 . . . . . . . . . . . . 13 ((2 + 1) ≤ 𝑋 ↔ 3 ≤ 𝑋)
2118, 20bitrdi 287 . . . . . . . . . . . 12 (𝑋 ∈ ℕ → (2 < 𝑋 ↔ 3 ≤ 𝑋))
22 3re 12325 . . . . . . . . . . . . . 14 3 ∈ ℝ
23 leloe 11326 . . . . . . . . . . . . . 14 ((3 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (3 ≤ 𝑋 ↔ (3 < 𝑋 ∨ 3 = 𝑋)))
2422, 13, 23sylancr 587 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → (3 ≤ 𝑋 ↔ (3 < 𝑋 ∨ 3 = 𝑋)))
25 df-4 12310 . . . . . . . . . . . . . . . . 17 4 = (3 + 1)
26 3z 12630 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℤ
27 zltp1le 12647 . . . . . . . . . . . . . . . . . . 19 ((3 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (3 < 𝑋 ↔ (3 + 1) ≤ 𝑋))
2826, 4, 27sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ ℕ → (3 < 𝑋 ↔ (3 + 1) ≤ 𝑋))
2928biimpa 476 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ ℕ ∧ 3 < 𝑋) → (3 + 1) ≤ 𝑋)
3025, 29eqbrtrid 5159 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℕ ∧ 3 < 𝑋) → 4 ≤ 𝑋)
3130a1d 25 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℕ ∧ 3 < 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
3231ex 412 . . . . . . . . . . . . . 14 (𝑋 ∈ ℕ → (3 < 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
33 neleq1 3043 . . . . . . . . . . . . . . . . 17 (𝑋 = 3 → (𝑋 ∉ ℙ ↔ 3 ∉ ℙ))
3433eqcoms 2744 . . . . . . . . . . . . . . . 16 (3 = 𝑋 → (𝑋 ∉ ℙ ↔ 3 ∉ ℙ))
35 3prm 16718 . . . . . . . . . . . . . . . . 17 3 ∈ ℙ
36 pm2.24nel 3050 . . . . . . . . . . . . . . . . 17 (3 ∈ ℙ → (3 ∉ ℙ → 4 ≤ 𝑋))
3735, 36mp1i 13 . . . . . . . . . . . . . . . 16 (3 = 𝑋 → (3 ∉ ℙ → 4 ≤ 𝑋))
3834, 37sylbid 240 . . . . . . . . . . . . . . 15 (3 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
3938a1i 11 . . . . . . . . . . . . . 14 (𝑋 ∈ ℕ → (3 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
4032, 39jaod 859 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → ((3 < 𝑋 ∨ 3 = 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
4124, 40sylbid 240 . . . . . . . . . . . 12 (𝑋 ∈ ℕ → (3 ≤ 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
4221, 41sylbid 240 . . . . . . . . . . 11 (𝑋 ∈ ℕ → (2 < 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
43 neleq1 3043 . . . . . . . . . . . . . 14 (𝑋 = 2 → (𝑋 ∉ ℙ ↔ 2 ∉ ℙ))
4443eqcoms 2744 . . . . . . . . . . . . 13 (2 = 𝑋 → (𝑋 ∉ ℙ ↔ 2 ∉ ℙ))
45 2prm 16716 . . . . . . . . . . . . . 14 2 ∈ ℙ
46 pm2.24nel 3050 . . . . . . . . . . . . . 14 (2 ∈ ℙ → (2 ∉ ℙ → 4 ≤ 𝑋))
4745, 46mp1i 13 . . . . . . . . . . . . 13 (2 = 𝑋 → (2 ∉ ℙ → 4 ≤ 𝑋))
4844, 47sylbid 240 . . . . . . . . . . . 12 (2 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
4948a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℕ → (2 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5042, 49jaod 859 . . . . . . . . . 10 (𝑋 ∈ ℕ → ((2 < 𝑋 ∨ 2 = 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5115, 50sylbid 240 . . . . . . . . 9 (𝑋 ∈ ℕ → (2 ≤ 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5211, 51sylbid 240 . . . . . . . 8 (𝑋 ∈ ℕ → (1 < 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5352imp 406 . . . . . . 7 ((𝑋 ∈ ℕ ∧ 1 < 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
5453imp 406 . . . . . 6 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → 4 ≤ 𝑋)
553, 5, 543jca 1128 . . . . 5 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋))
5655ex 412 . . . 4 ((𝑋 ∈ ℕ ∧ 1 < 𝑋) → (𝑋 ∉ ℙ → (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋)))
57 eluz2 12863 . . . 4 (𝑋 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋))
5856, 57imbitrrdi 252 . . 3 ((𝑋 ∈ ℕ ∧ 1 < 𝑋) → (𝑋 ∉ ℙ → 𝑋 ∈ (ℤ‘4)))
591, 58sylbi 217 . 2 (𝑋 ∈ (ℤ‘2) → (𝑋 ∉ ℙ → 𝑋 ∈ (ℤ‘4)))
6059imp 406 1 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wnel 3037   class class class wbr 5124  cfv 6536  (class class class)co 7410  cr 11133  1c1 11135   + caddc 11137   < clt 11274  cle 11275  cn 12245  2c2 12300  3c3 12301  4c4 12302  cz 12593  cuz 12857  cprime 16695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-prm 16696
This theorem is referenced by:  fpprel2  47722
  Copyright terms: Public domain W3C validator