MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ge2nprmge4 Structured version   Visualization version   GIF version

Theorem ge2nprmge4 16406
Description: A composite integer greater than or equal to 2 is greater than or equal to 4. (Contributed by AV, 5-Jun-2023.)
Assertion
Ref Expression
ge2nprmge4 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))

Proof of Theorem ge2nprmge4
StepHypRef Expression
1 eluz2b2 12661 . . 3 (𝑋 ∈ (ℤ‘2) ↔ (𝑋 ∈ ℕ ∧ 1 < 𝑋))
2 4z 12354 . . . . . . 7 4 ∈ ℤ
32a1i 11 . . . . . 6 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → 4 ∈ ℤ)
4 nnz 12342 . . . . . . 7 (𝑋 ∈ ℕ → 𝑋 ∈ ℤ)
54ad2antrr 723 . . . . . 6 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ ℤ)
6 1z 12350 . . . . . . . . . . 11 1 ∈ ℤ
7 zltp1le 12370 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (1 < 𝑋 ↔ (1 + 1) ≤ 𝑋))
86, 4, 7sylancr 587 . . . . . . . . . 10 (𝑋 ∈ ℕ → (1 < 𝑋 ↔ (1 + 1) ≤ 𝑋))
9 1p1e2 12098 . . . . . . . . . . 11 (1 + 1) = 2
109breq1i 5081 . . . . . . . . . 10 ((1 + 1) ≤ 𝑋 ↔ 2 ≤ 𝑋)
118, 10bitrdi 287 . . . . . . . . 9 (𝑋 ∈ ℕ → (1 < 𝑋 ↔ 2 ≤ 𝑋))
12 2re 12047 . . . . . . . . . . 11 2 ∈ ℝ
13 nnre 11980 . . . . . . . . . . 11 (𝑋 ∈ ℕ → 𝑋 ∈ ℝ)
14 leloe 11061 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 ≤ 𝑋 ↔ (2 < 𝑋 ∨ 2 = 𝑋)))
1512, 13, 14sylancr 587 . . . . . . . . . 10 (𝑋 ∈ ℕ → (2 ≤ 𝑋 ↔ (2 < 𝑋 ∨ 2 = 𝑋)))
16 2z 12352 . . . . . . . . . . . . . 14 2 ∈ ℤ
17 zltp1le 12370 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (2 < 𝑋 ↔ (2 + 1) ≤ 𝑋))
1816, 4, 17sylancr 587 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → (2 < 𝑋 ↔ (2 + 1) ≤ 𝑋))
19 2p1e3 12115 . . . . . . . . . . . . . 14 (2 + 1) = 3
2019breq1i 5081 . . . . . . . . . . . . 13 ((2 + 1) ≤ 𝑋 ↔ 3 ≤ 𝑋)
2118, 20bitrdi 287 . . . . . . . . . . . 12 (𝑋 ∈ ℕ → (2 < 𝑋 ↔ 3 ≤ 𝑋))
22 3re 12053 . . . . . . . . . . . . . 14 3 ∈ ℝ
23 leloe 11061 . . . . . . . . . . . . . 14 ((3 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (3 ≤ 𝑋 ↔ (3 < 𝑋 ∨ 3 = 𝑋)))
2422, 13, 23sylancr 587 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → (3 ≤ 𝑋 ↔ (3 < 𝑋 ∨ 3 = 𝑋)))
25 df-4 12038 . . . . . . . . . . . . . . . . 17 4 = (3 + 1)
26 3z 12353 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℤ
27 zltp1le 12370 . . . . . . . . . . . . . . . . . . 19 ((3 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (3 < 𝑋 ↔ (3 + 1) ≤ 𝑋))
2826, 4, 27sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ ℕ → (3 < 𝑋 ↔ (3 + 1) ≤ 𝑋))
2928biimpa 477 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ ℕ ∧ 3 < 𝑋) → (3 + 1) ≤ 𝑋)
3025, 29eqbrtrid 5109 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℕ ∧ 3 < 𝑋) → 4 ≤ 𝑋)
3130a1d 25 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℕ ∧ 3 < 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
3231ex 413 . . . . . . . . . . . . . 14 (𝑋 ∈ ℕ → (3 < 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
33 neleq1 3054 . . . . . . . . . . . . . . . . 17 (𝑋 = 3 → (𝑋 ∉ ℙ ↔ 3 ∉ ℙ))
3433eqcoms 2746 . . . . . . . . . . . . . . . 16 (3 = 𝑋 → (𝑋 ∉ ℙ ↔ 3 ∉ ℙ))
35 3prm 16399 . . . . . . . . . . . . . . . . 17 3 ∈ ℙ
36 elnelall 3062 . . . . . . . . . . . . . . . . 17 (3 ∈ ℙ → (3 ∉ ℙ → 4 ≤ 𝑋))
3735, 36mp1i 13 . . . . . . . . . . . . . . . 16 (3 = 𝑋 → (3 ∉ ℙ → 4 ≤ 𝑋))
3834, 37sylbid 239 . . . . . . . . . . . . . . 15 (3 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
3938a1i 11 . . . . . . . . . . . . . 14 (𝑋 ∈ ℕ → (3 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
4032, 39jaod 856 . . . . . . . . . . . . 13 (𝑋 ∈ ℕ → ((3 < 𝑋 ∨ 3 = 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
4124, 40sylbid 239 . . . . . . . . . . . 12 (𝑋 ∈ ℕ → (3 ≤ 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
4221, 41sylbid 239 . . . . . . . . . . 11 (𝑋 ∈ ℕ → (2 < 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
43 neleq1 3054 . . . . . . . . . . . . . 14 (𝑋 = 2 → (𝑋 ∉ ℙ ↔ 2 ∉ ℙ))
4443eqcoms 2746 . . . . . . . . . . . . 13 (2 = 𝑋 → (𝑋 ∉ ℙ ↔ 2 ∉ ℙ))
45 2prm 16397 . . . . . . . . . . . . . 14 2 ∈ ℙ
46 elnelall 3062 . . . . . . . . . . . . . 14 (2 ∈ ℙ → (2 ∉ ℙ → 4 ≤ 𝑋))
4745, 46mp1i 13 . . . . . . . . . . . . 13 (2 = 𝑋 → (2 ∉ ℙ → 4 ≤ 𝑋))
4844, 47sylbid 239 . . . . . . . . . . . 12 (2 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
4948a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℕ → (2 = 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5042, 49jaod 856 . . . . . . . . . 10 (𝑋 ∈ ℕ → ((2 < 𝑋 ∨ 2 = 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5115, 50sylbid 239 . . . . . . . . 9 (𝑋 ∈ ℕ → (2 ≤ 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5211, 51sylbid 239 . . . . . . . 8 (𝑋 ∈ ℕ → (1 < 𝑋 → (𝑋 ∉ ℙ → 4 ≤ 𝑋)))
5352imp 407 . . . . . . 7 ((𝑋 ∈ ℕ ∧ 1 < 𝑋) → (𝑋 ∉ ℙ → 4 ≤ 𝑋))
5453imp 407 . . . . . 6 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → 4 ≤ 𝑋)
553, 5, 543jca 1127 . . . . 5 (((𝑋 ∈ ℕ ∧ 1 < 𝑋) ∧ 𝑋 ∉ ℙ) → (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋))
5655ex 413 . . . 4 ((𝑋 ∈ ℕ ∧ 1 < 𝑋) → (𝑋 ∉ ℙ → (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋)))
57 eluz2 12588 . . . 4 (𝑋 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋))
5856, 57syl6ibr 251 . . 3 ((𝑋 ∈ ℕ ∧ 1 < 𝑋) → (𝑋 ∉ ℙ → 𝑋 ∈ (ℤ‘4)))
591, 58sylbi 216 . 2 (𝑋 ∈ (ℤ‘2) → (𝑋 ∉ ℙ → 𝑋 ∈ (ℤ‘4)))
6059imp 407 1 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wnel 3049   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cn 11973  2c2 12028  3c3 12029  4c4 12030  cz 12319  cuz 12582  cprime 16376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-prm 16377
This theorem is referenced by:  fpprel2  45193
  Copyright terms: Public domain W3C validator