Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelcon3d | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for negated membership. (Contributed by AV, 28-Jan-2020.) |
Ref | Expression |
---|---|
nelcon3d.1 | ⊢ (𝜑 → (𝐴 ∈ 𝐵 → 𝐶 ∈ 𝐷)) |
Ref | Expression |
---|---|
nelcon3d | ⊢ (𝜑 → (𝐶 ∉ 𝐷 → 𝐴 ∉ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelcon3d.1 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝐵 → 𝐶 ∈ 𝐷)) | |
2 | 1 | con3d 155 | . 2 ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐷 → ¬ 𝐴 ∈ 𝐵)) |
3 | df-nel 3039 | . 2 ⊢ (𝐶 ∉ 𝐷 ↔ ¬ 𝐶 ∈ 𝐷) | |
4 | df-nel 3039 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
5 | 2, 3, 4 | 3imtr4g 299 | 1 ⊢ (𝜑 → (𝐶 ∉ 𝐷 → 𝐴 ∉ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2113 ∉ wnel 3038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-nel 3039 |
This theorem is referenced by: prcssprc 5190 fsetprcnex 8465 lcmfnnval 16058 isnmgm 17965 mgmplusfreseq 44845 |
Copyright terms: Public domain | W3C validator |