![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsb4 | Structured version Visualization version GIF version |
Description: Substitution applied to an atomic membership wff. For a version requiring more disjoint variables, but fewer axioms, see elsb4v 2515. (Contributed by Rodolfo Medina, 3-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) Remove dependency on ax-11 2150. (Revised by Wolf Lammen, 28-Jul-2022.) |
Ref | Expression |
---|---|
elsb4 | ⊢ ([𝑥 / 𝑦]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcom3 2487 | . . 3 ⊢ ([𝑥 / 𝑤][𝑤 / 𝑦]𝑧 ∈ 𝑦 ↔ [𝑥 / 𝑤][𝑥 / 𝑦]𝑧 ∈ 𝑦) | |
2 | elsb4v 2515 | . . . 4 ⊢ ([𝑤 / 𝑦]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑤) | |
3 | 2 | sbbii 2019 | . . 3 ⊢ ([𝑥 / 𝑤][𝑤 / 𝑦]𝑧 ∈ 𝑦 ↔ [𝑥 / 𝑤]𝑧 ∈ 𝑤) |
4 | nfv 1957 | . . . 4 ⊢ Ⅎ𝑤[𝑥 / 𝑦]𝑧 ∈ 𝑦 | |
5 | 4 | sbf 2456 | . . 3 ⊢ ([𝑥 / 𝑤][𝑥 / 𝑦]𝑧 ∈ 𝑦 ↔ [𝑥 / 𝑦]𝑧 ∈ 𝑦) |
6 | 1, 3, 5 | 3bitr3i 293 | . 2 ⊢ ([𝑥 / 𝑤]𝑧 ∈ 𝑤 ↔ [𝑥 / 𝑦]𝑧 ∈ 𝑦) |
7 | elsb4v 2515 | . 2 ⊢ ([𝑥 / 𝑤]𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑥) | |
8 | 6, 7 | bitr3i 269 | 1 ⊢ ([𝑥 / 𝑦]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 [wsb 2011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-12 2163 ax-13 2334 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-ex 1824 df-nf 1828 df-sb 2012 |
This theorem is referenced by: nfnid 5087 |
Copyright terms: Public domain | W3C validator |