MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsb4 Structured version   Visualization version   GIF version

Theorem elsb4 2516
Description: Substitution applied to an atomic membership wff. For a version requiring more disjoint variables, but fewer axioms, see elsb4v 2515. (Contributed by Rodolfo Medina, 3-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) Remove dependency on ax-11 2150. (Revised by Wolf Lammen, 28-Jul-2022.)
Assertion
Ref Expression
elsb4 ([𝑥 / 𝑦]𝑧𝑦𝑧𝑥)
Distinct variable group:   𝑦,𝑧

Proof of Theorem elsb4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sbcom3 2487 . . 3 ([𝑥 / 𝑤][𝑤 / 𝑦]𝑧𝑦 ↔ [𝑥 / 𝑤][𝑥 / 𝑦]𝑧𝑦)
2 elsb4v 2515 . . . 4 ([𝑤 / 𝑦]𝑧𝑦𝑧𝑤)
32sbbii 2019 . . 3 ([𝑥 / 𝑤][𝑤 / 𝑦]𝑧𝑦 ↔ [𝑥 / 𝑤]𝑧𝑤)
4 nfv 1957 . . . 4 𝑤[𝑥 / 𝑦]𝑧𝑦
54sbf 2456 . . 3 ([𝑥 / 𝑤][𝑥 / 𝑦]𝑧𝑦 ↔ [𝑥 / 𝑦]𝑧𝑦)
61, 3, 53bitr3i 293 . 2 ([𝑥 / 𝑤]𝑧𝑤 ↔ [𝑥 / 𝑦]𝑧𝑦)
7 elsb4v 2515 . 2 ([𝑥 / 𝑤]𝑧𝑤𝑧𝑥)
86, 7bitr3i 269 1 ([𝑥 / 𝑦]𝑧𝑦𝑧𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 198  [wsb 2011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-12 2163  ax-13 2334
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-ex 1824  df-nf 1828  df-sb 2012
This theorem is referenced by:  nfnid  5087
  Copyright terms: Public domain W3C validator