| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbievw2 | Structured version Visualization version GIF version | ||
| Description: sbievw 2094 applied twice, avoiding a DV condition on 𝑥, 𝑦. Based on proofs by Wolf Lammen. (Contributed by Steven Nguyen, 29-Jul-2023.) |
| Ref | Expression |
|---|---|
| sbievw2.1 | ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) |
| sbievw2.2 | ⊢ (𝑤 = 𝑦 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbievw2 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcom3vv 2098 | . . 3 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑤][𝑦 / 𝑥]𝜑) | |
| 2 | sbievw2.1 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) | |
| 3 | 2 | sbievw 2094 | . . . 4 ⊢ ([𝑤 / 𝑥]𝜑 ↔ 𝜒) |
| 4 | 3 | sbbii 2077 | . . 3 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑤]𝜒) |
| 5 | sbv 2089 | . . 3 ⊢ ([𝑦 / 𝑤][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
| 6 | 1, 4, 5 | 3bitr3i 301 | . 2 ⊢ ([𝑦 / 𝑤]𝜒 ↔ [𝑦 / 𝑥]𝜑) |
| 7 | sbievw2.2 | . . 3 ⊢ (𝑤 = 𝑦 → (𝜒 ↔ 𝜓)) | |
| 8 | 7 | sbievw 2094 | . 2 ⊢ ([𝑦 / 𝑤]𝜒 ↔ 𝜓) |
| 9 | 6, 8 | bitr3i 277 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: sbco2vv 2100 equsb3 2104 equsb3r 2105 elsb1 2117 elsb2 2126 eqsb1 2861 clelsb1 2862 clelsb2 2863 sbss 4499 |
| Copyright terms: Public domain | W3C validator |