Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfnid | Structured version Visualization version GIF version |
Description: A setvar variable is not free from itself. This theorem is not true in a one-element domain, as illustrated by the use of dtru 5288 in its proof. (Contributed by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
nfnid | ⊢ ¬ Ⅎ𝑥𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dtru 5288 | . . 3 ⊢ ¬ ∀𝑧 𝑧 = 𝑤 | |
2 | ax-ext 2709 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤) → 𝑧 = 𝑤) | |
3 | 2 | sps 2180 | . . . 4 ⊢ (∀𝑤∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤) → 𝑧 = 𝑤) |
4 | 3 | alimi 1815 | . . 3 ⊢ (∀𝑧∀𝑤∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤) → ∀𝑧 𝑧 = 𝑤) |
5 | 1, 4 | mto 196 | . 2 ⊢ ¬ ∀𝑧∀𝑤∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤) |
6 | df-nfc 2888 | . . 3 ⊢ (Ⅎ𝑥𝑥 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝑥) | |
7 | sbnf2 2356 | . . . . 5 ⊢ (Ⅎ𝑥 𝑦 ∈ 𝑥 ↔ ∀𝑧∀𝑤([𝑧 / 𝑥]𝑦 ∈ 𝑥 ↔ [𝑤 / 𝑥]𝑦 ∈ 𝑥)) | |
8 | elsb2 2125 | . . . . . . 7 ⊢ ([𝑧 / 𝑥]𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧) | |
9 | elsb2 2125 | . . . . . . 7 ⊢ ([𝑤 / 𝑥]𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑤) | |
10 | 8, 9 | bibi12i 339 | . . . . . 6 ⊢ (([𝑧 / 𝑥]𝑦 ∈ 𝑥 ↔ [𝑤 / 𝑥]𝑦 ∈ 𝑥) ↔ (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤)) |
11 | 10 | 2albii 1824 | . . . . 5 ⊢ (∀𝑧∀𝑤([𝑧 / 𝑥]𝑦 ∈ 𝑥 ↔ [𝑤 / 𝑥]𝑦 ∈ 𝑥) ↔ ∀𝑧∀𝑤(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤)) |
12 | 7, 11 | bitri 274 | . . . 4 ⊢ (Ⅎ𝑥 𝑦 ∈ 𝑥 ↔ ∀𝑧∀𝑤(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤)) |
13 | 12 | albii 1823 | . . 3 ⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝑥 ↔ ∀𝑦∀𝑧∀𝑤(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤)) |
14 | alrot3 2159 | . . 3 ⊢ (∀𝑦∀𝑧∀𝑤(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤) ↔ ∀𝑧∀𝑤∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤)) | |
15 | 6, 13, 14 | 3bitri 296 | . 2 ⊢ (Ⅎ𝑥𝑥 ↔ ∀𝑧∀𝑤∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤)) |
16 | 5, 15 | mtbir 322 | 1 ⊢ ¬ Ⅎ𝑥𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 Ⅎwnf 1787 [wsb 2068 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 ax-pow 5283 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 df-nfc 2888 |
This theorem is referenced by: nfcvb 5294 |
Copyright terms: Public domain | W3C validator |