| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfnid | Structured version Visualization version GIF version | ||
| Description: A setvar variable is not free from itself. This theorem is not true in a one-element domain, as illustrated by the use of dtruALT2 5306 in its proof. (Contributed by Mario Carneiro, 8-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfnid | ⊢ ¬ Ⅎ𝑥𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dtruALT2 5306 | . . 3 ⊢ ¬ ∀𝑧 𝑧 = 𝑤 | |
| 2 | ax-ext 2703 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤) → 𝑧 = 𝑤) | |
| 3 | 2 | sps 2188 | . . . 4 ⊢ (∀𝑤∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤) → 𝑧 = 𝑤) |
| 4 | 3 | alimi 1812 | . . 3 ⊢ (∀𝑧∀𝑤∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤) → ∀𝑧 𝑧 = 𝑤) |
| 5 | 1, 4 | mto 197 | . 2 ⊢ ¬ ∀𝑧∀𝑤∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤) |
| 6 | df-nfc 2881 | . . 3 ⊢ (Ⅎ𝑥𝑥 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝑥) | |
| 7 | sbnf2 2358 | . . . . 5 ⊢ (Ⅎ𝑥 𝑦 ∈ 𝑥 ↔ ∀𝑧∀𝑤([𝑧 / 𝑥]𝑦 ∈ 𝑥 ↔ [𝑤 / 𝑥]𝑦 ∈ 𝑥)) | |
| 8 | elsb2 2128 | . . . . . . 7 ⊢ ([𝑧 / 𝑥]𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧) | |
| 9 | elsb2 2128 | . . . . . . 7 ⊢ ([𝑤 / 𝑥]𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑤) | |
| 10 | 8, 9 | bibi12i 339 | . . . . . 6 ⊢ (([𝑧 / 𝑥]𝑦 ∈ 𝑥 ↔ [𝑤 / 𝑥]𝑦 ∈ 𝑥) ↔ (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤)) |
| 11 | 10 | 2albii 1821 | . . . . 5 ⊢ (∀𝑧∀𝑤([𝑧 / 𝑥]𝑦 ∈ 𝑥 ↔ [𝑤 / 𝑥]𝑦 ∈ 𝑥) ↔ ∀𝑧∀𝑤(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤)) |
| 12 | 7, 11 | bitri 275 | . . . 4 ⊢ (Ⅎ𝑥 𝑦 ∈ 𝑥 ↔ ∀𝑧∀𝑤(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤)) |
| 13 | 12 | albii 1820 | . . 3 ⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝑥 ↔ ∀𝑦∀𝑧∀𝑤(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤)) |
| 14 | alrot3 2163 | . . 3 ⊢ (∀𝑦∀𝑧∀𝑤(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤) ↔ ∀𝑧∀𝑤∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤)) | |
| 15 | 6, 13, 14 | 3bitri 297 | . 2 ⊢ (Ⅎ𝑥𝑥 ↔ ∀𝑧∀𝑤∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤)) |
| 16 | 5, 15 | mtbir 323 | 1 ⊢ ¬ Ⅎ𝑥𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1539 Ⅎwnf 1784 [wsb 2067 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-nul 5242 ax-pow 5301 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 df-nfc 2881 |
| This theorem is referenced by: nfcvb 5312 |
| Copyright terms: Public domain | W3C validator |