Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqab2 Structured version   Visualization version   GIF version

Theorem eqab2 38232
Description: Implication of a class abstraction. (Contributed by Peter Mazsa, 16-Apr-2019.)
Assertion
Ref Expression
eqab2 (∀𝑥(𝑥𝐴𝜑) → ∀𝑥𝐴 𝜑)

Proof of Theorem eqab2
StepHypRef Expression
1 biimp 215 . . 3 ((𝑥𝐴𝜑) → (𝑥𝐴𝜑))
21alimi 1811 . 2 (∀𝑥(𝑥𝐴𝜑) → ∀𝑥(𝑥𝐴𝜑))
3 df-ral 3046 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
42, 3sylibr 234 1 (∀𝑥(𝑥𝐴𝜑) → ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2109  wral 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ral 3046
This theorem is referenced by:  dmqsblocks  38840
  Copyright terms: Public domain W3C validator