Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nexmo1 Structured version   Visualization version   GIF version

Theorem nexmo1 36029
Description: If there is no case where wff is true, it is true for at most one case. (Contributed by Peter Mazsa, 27-Sep-2021.)
Assertion
Ref Expression
nexmo1 (¬ ∃𝑥𝜑 → ∃*𝑥𝜑)

Proof of Theorem nexmo1
StepHypRef Expression
1 pm2.21 123 . 2 (¬ ∃𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑))
2 moeu 2584 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
31, 2sylibr 237 1 (¬ ∃𝑥𝜑 → ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wex 1786  ∃*wmo 2538  ∃!weu 2569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1787  df-mo 2540  df-eu 2570
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator