Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmqsblocks Structured version   Visualization version   GIF version

Theorem dmqsblocks 39024
Description: If the pet 39022 span (𝑅 ⋉ ( E ↾ 𝐴)) partitions 𝐴, then every block 𝑢𝐴 is of the form [𝑣] for some 𝑣 that not only lies in the domain but also has at least one internal element 𝑐 and at least one 𝑅-target 𝑏 (cf. also the comments of qseq 38819). It makes explicit that pet 39022 gives active representatives for each block, without ever forcing 𝑣 = 𝑢. (Contributed by Peter Mazsa, 23-Nov-2025.)
Assertion
Ref Expression
dmqsblocks ((dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴 → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
Distinct variable groups:   𝐴,𝑏,𝑐,𝑢,𝑣   𝑅,𝑏,𝑐,𝑢,𝑣

Proof of Theorem dmqsblocks
StepHypRef Expression
1 qseq 38819 . . 3 ((dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴 ↔ ∀𝑢(𝑢𝐴 ↔ ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))))
2 eqab2 38358 . . 3 (∀𝑢(𝑢𝐴 ↔ ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)))
31, 2sylbi 217 . 2 ((dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴 → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)))
4 rexanid 3082 . . . 4 (∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))(𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) ↔ ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)))
5 eldmxrncnvepres2 38532 . . . . . . . . . 10 (𝑣 ∈ V → (𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝑣𝐴 ∧ ∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏)))
65elv 3442 . . . . . . . . 9 (𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝑣𝐴 ∧ ∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏))
7 3simpc 1150 . . . . . . . . 9 ((𝑣𝐴 ∧ ∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏) → (∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏))
86, 7sylbi 217 . . . . . . . 8 (𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) → (∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏))
9 exdistrv 1956 . . . . . . . . 9 (∃𝑐𝑏(𝑐𝑣𝑣𝑅𝑏) ↔ (∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏))
10 excom 2167 . . . . . . . . 9 (∃𝑐𝑏(𝑐𝑣𝑣𝑅𝑏) ↔ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏))
119, 10bitr3i 277 . . . . . . . 8 ((∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏) ↔ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏))
128, 11sylib 218 . . . . . . 7 (𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) → ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏))
1312anim1ci 616 . . . . . 6 ((𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) → (𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏)))
14 3anass 1094 . . . . . . . 8 ((𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏) ↔ (𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ (𝑐𝑣𝑣𝑅𝑏)))
15142exbii 1850 . . . . . . 7 (∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏) ↔ ∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ (𝑐𝑣𝑣𝑅𝑏)))
16 19.42vv 1958 . . . . . . 7 (∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ (𝑐𝑣𝑣𝑅𝑏)) ↔ (𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏)))
1715, 16sylbbr 236 . . . . . 6 ((𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏)) → ∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
1813, 17syl 17 . . . . 5 ((𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) → ∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
1918reximi 3071 . . . 4 (∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))(𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) → ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
204, 19sylbir 235 . . 3 (∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) → ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
2120ralimi 3070 . 2 (∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
223, 21syl 17 1 ((dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴 → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2113  wral 3048  wrex 3057  Vcvv 3437   class class class wbr 5095   E cep 5520  ccnv 5620  dom cdm 5621  cres 5623  [cec 8629   / cqs 8630  cxrn 38287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-eprel 5521  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fo 6495  df-fv 6497  df-oprab 7359  df-1st 7930  df-2nd 7931  df-qs 8637  df-xrn 38477
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator