Proof of Theorem dmqsblocks
| Step | Hyp | Ref
| Expression |
| 1 | | qseq 38635 |
. . 3
⊢ ((dom
(𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴 ↔ ∀𝑢(𝑢 ∈ 𝐴 ↔ ∃𝑣 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴)))) |
| 2 | | eqab2 38232 |
. . 3
⊢
(∀𝑢(𝑢 ∈ 𝐴 ↔ ∃𝑣 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴))) → ∀𝑢 ∈ 𝐴 ∃𝑣 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴))) |
| 3 | 1, 2 | sylbi 217 |
. 2
⊢ ((dom
(𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴 → ∀𝑢 ∈ 𝐴 ∃𝑣 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴))) |
| 4 | | rexanid 3079 |
. . . 4
⊢
(∃𝑣 ∈ dom
(𝑅 ⋉ (◡ E ↾ 𝐴))(𝑣 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴))) ↔ ∃𝑣 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴))) |
| 5 | | eldmxrncnvepres2 38392 |
. . . . . . . . . 10
⊢ (𝑣 ∈ V → (𝑣 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ (𝑣 ∈ 𝐴 ∧ ∃𝑐 𝑐 ∈ 𝑣 ∧ ∃𝑏 𝑣𝑅𝑏))) |
| 6 | 5 | elv 3455 |
. . . . . . . . 9
⊢ (𝑣 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ (𝑣 ∈ 𝐴 ∧ ∃𝑐 𝑐 ∈ 𝑣 ∧ ∃𝑏 𝑣𝑅𝑏)) |
| 7 | | 3simpc 1150 |
. . . . . . . . 9
⊢ ((𝑣 ∈ 𝐴 ∧ ∃𝑐 𝑐 ∈ 𝑣 ∧ ∃𝑏 𝑣𝑅𝑏) → (∃𝑐 𝑐 ∈ 𝑣 ∧ ∃𝑏 𝑣𝑅𝑏)) |
| 8 | 6, 7 | sylbi 217 |
. . . . . . . 8
⊢ (𝑣 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) → (∃𝑐 𝑐 ∈ 𝑣 ∧ ∃𝑏 𝑣𝑅𝑏)) |
| 9 | | exdistrv 1955 |
. . . . . . . . 9
⊢
(∃𝑐∃𝑏(𝑐 ∈ 𝑣 ∧ 𝑣𝑅𝑏) ↔ (∃𝑐 𝑐 ∈ 𝑣 ∧ ∃𝑏 𝑣𝑅𝑏)) |
| 10 | | excom 2163 |
. . . . . . . . 9
⊢
(∃𝑐∃𝑏(𝑐 ∈ 𝑣 ∧ 𝑣𝑅𝑏) ↔ ∃𝑏∃𝑐(𝑐 ∈ 𝑣 ∧ 𝑣𝑅𝑏)) |
| 11 | 9, 10 | bitr3i 277 |
. . . . . . . 8
⊢
((∃𝑐 𝑐 ∈ 𝑣 ∧ ∃𝑏 𝑣𝑅𝑏) ↔ ∃𝑏∃𝑐(𝑐 ∈ 𝑣 ∧ 𝑣𝑅𝑏)) |
| 12 | 8, 11 | sylib 218 |
. . . . . . 7
⊢ (𝑣 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) → ∃𝑏∃𝑐(𝑐 ∈ 𝑣 ∧ 𝑣𝑅𝑏)) |
| 13 | 12 | anim1ci 616 |
. . . . . 6
⊢ ((𝑣 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴))) → (𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ ∃𝑏∃𝑐(𝑐 ∈ 𝑣 ∧ 𝑣𝑅𝑏))) |
| 14 | | 3anass 1094 |
. . . . . . . 8
⊢ ((𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ 𝑐 ∈ 𝑣 ∧ 𝑣𝑅𝑏) ↔ (𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (𝑐 ∈ 𝑣 ∧ 𝑣𝑅𝑏))) |
| 15 | 14 | 2exbii 1849 |
. . . . . . 7
⊢
(∃𝑏∃𝑐(𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ 𝑐 ∈ 𝑣 ∧ 𝑣𝑅𝑏) ↔ ∃𝑏∃𝑐(𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (𝑐 ∈ 𝑣 ∧ 𝑣𝑅𝑏))) |
| 16 | | 19.42vv 1957 |
. . . . . . 7
⊢
(∃𝑏∃𝑐(𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (𝑐 ∈ 𝑣 ∧ 𝑣𝑅𝑏)) ↔ (𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ ∃𝑏∃𝑐(𝑐 ∈ 𝑣 ∧ 𝑣𝑅𝑏))) |
| 17 | 15, 16 | sylbbr 236 |
. . . . . 6
⊢ ((𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ ∃𝑏∃𝑐(𝑐 ∈ 𝑣 ∧ 𝑣𝑅𝑏)) → ∃𝑏∃𝑐(𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ 𝑐 ∈ 𝑣 ∧ 𝑣𝑅𝑏)) |
| 18 | 13, 17 | syl 17 |
. . . . 5
⊢ ((𝑣 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴))) → ∃𝑏∃𝑐(𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ 𝑐 ∈ 𝑣 ∧ 𝑣𝑅𝑏)) |
| 19 | 18 | reximi 3068 |
. . . 4
⊢
(∃𝑣 ∈ dom
(𝑅 ⋉ (◡ E ↾ 𝐴))(𝑣 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴))) → ∃𝑣 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴))∃𝑏∃𝑐(𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ 𝑐 ∈ 𝑣 ∧ 𝑣𝑅𝑏)) |
| 20 | 4, 19 | sylbir 235 |
. . 3
⊢
(∃𝑣 ∈ dom
(𝑅 ⋉ (◡ E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴)) → ∃𝑣 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴))∃𝑏∃𝑐(𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ 𝑐 ∈ 𝑣 ∧ 𝑣𝑅𝑏)) |
| 21 | 20 | ralimi 3067 |
. 2
⊢
(∀𝑢 ∈
𝐴 ∃𝑣 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴)) → ∀𝑢 ∈ 𝐴 ∃𝑣 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴))∃𝑏∃𝑐(𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ 𝑐 ∈ 𝑣 ∧ 𝑣𝑅𝑏)) |
| 22 | 3, 21 | syl 17 |
1
⊢ ((dom
(𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴 → ∀𝑢 ∈ 𝐴 ∃𝑣 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴))∃𝑏∃𝑐(𝑢 = [𝑣](𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ 𝑐 ∈ 𝑣 ∧ 𝑣𝑅𝑏)) |