Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmqsblocks Structured version   Visualization version   GIF version

Theorem dmqsblocks 38891
Description: If the pet 38889 span (𝑅 ⋉ (' E | 𝐴)) partitions 𝐴, then every block 𝑢𝐴 is of the form [𝑣] for some 𝑣 that not only lies in the domain but also has at least one internal element 𝑐 and at least one 𝑅-target 𝑏 (cf. also the comments of qseq 38686). It makes explicit that pet 38889 gives active representatives for each block, without ever forcing 𝑣 = 𝑢. (Contributed by Peter Mazsa, 23-Nov-2025.)
Assertion
Ref Expression
dmqsblocks ((dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴 → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
Distinct variable groups:   𝐴,𝑏,𝑐,𝑢,𝑣   𝑅,𝑏,𝑐,𝑢,𝑣

Proof of Theorem dmqsblocks
StepHypRef Expression
1 qseq 38686 . . 3 ((dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴 ↔ ∀𝑢(𝑢𝐴 ↔ ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))))
2 eqab2 38283 . . 3 (∀𝑢(𝑢𝐴 ↔ ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)))
31, 2sylbi 217 . 2 ((dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴 → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)))
4 rexanid 3081 . . . 4 (∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))(𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) ↔ ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)))
5 eldmxrncnvepres2 38443 . . . . . . . . . 10 (𝑣 ∈ V → (𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝑣𝐴 ∧ ∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏)))
65elv 3441 . . . . . . . . 9 (𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝑣𝐴 ∧ ∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏))
7 3simpc 1150 . . . . . . . . 9 ((𝑣𝐴 ∧ ∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏) → (∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏))
86, 7sylbi 217 . . . . . . . 8 (𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) → (∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏))
9 exdistrv 1956 . . . . . . . . 9 (∃𝑐𝑏(𝑐𝑣𝑣𝑅𝑏) ↔ (∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏))
10 excom 2165 . . . . . . . . 9 (∃𝑐𝑏(𝑐𝑣𝑣𝑅𝑏) ↔ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏))
119, 10bitr3i 277 . . . . . . . 8 ((∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏) ↔ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏))
128, 11sylib 218 . . . . . . 7 (𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) → ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏))
1312anim1ci 616 . . . . . 6 ((𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) → (𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏)))
14 3anass 1094 . . . . . . . 8 ((𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏) ↔ (𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ (𝑐𝑣𝑣𝑅𝑏)))
15142exbii 1850 . . . . . . 7 (∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏) ↔ ∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ (𝑐𝑣𝑣𝑅𝑏)))
16 19.42vv 1958 . . . . . . 7 (∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ (𝑐𝑣𝑣𝑅𝑏)) ↔ (𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏)))
1715, 16sylbbr 236 . . . . . 6 ((𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏)) → ∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
1813, 17syl 17 . . . . 5 ((𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) → ∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
1918reximi 3070 . . . 4 (∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))(𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) → ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
204, 19sylbir 235 . . 3 (∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) → ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
2120ralimi 3069 . 2 (∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
223, 21syl 17 1 ((dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴 → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436   class class class wbr 5086   E cep 5510  ccnv 5610  dom cdm 5611  cres 5613  [cec 8615   / cqs 8616  cxrn 38214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-eprel 5511  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fo 6482  df-fv 6484  df-oprab 7345  df-1st 7916  df-2nd 7917  df-qs 8623  df-xrn 38399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator