Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmqsblocks Structured version   Visualization version   GIF version

Theorem dmqsblocks 38840
Description: If the pet 38838 span (𝑅 ⋉ (' E | 𝐴)) partitions 𝐴, then every block 𝑢𝐴 is of the form [𝑣] for some 𝑣 that not only lies in the domain but also has at least one internal element 𝑐 and at least one 𝑅-target 𝑏 (cf. also the comments of qseq 38635). It makes explicit that pet 38838 gives active representatives for each block, without ever forcing 𝑣 = 𝑢. (Contributed by Peter Mazsa, 23-Nov-2025.)
Assertion
Ref Expression
dmqsblocks ((dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴 → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
Distinct variable groups:   𝐴,𝑏,𝑐,𝑢,𝑣   𝑅,𝑏,𝑐,𝑢,𝑣

Proof of Theorem dmqsblocks
StepHypRef Expression
1 qseq 38635 . . 3 ((dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴 ↔ ∀𝑢(𝑢𝐴 ↔ ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))))
2 eqab2 38232 . . 3 (∀𝑢(𝑢𝐴 ↔ ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)))
31, 2sylbi 217 . 2 ((dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴 → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)))
4 rexanid 3079 . . . 4 (∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))(𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) ↔ ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)))
5 eldmxrncnvepres2 38392 . . . . . . . . . 10 (𝑣 ∈ V → (𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝑣𝐴 ∧ ∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏)))
65elv 3455 . . . . . . . . 9 (𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝑣𝐴 ∧ ∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏))
7 3simpc 1150 . . . . . . . . 9 ((𝑣𝐴 ∧ ∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏) → (∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏))
86, 7sylbi 217 . . . . . . . 8 (𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) → (∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏))
9 exdistrv 1955 . . . . . . . . 9 (∃𝑐𝑏(𝑐𝑣𝑣𝑅𝑏) ↔ (∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏))
10 excom 2163 . . . . . . . . 9 (∃𝑐𝑏(𝑐𝑣𝑣𝑅𝑏) ↔ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏))
119, 10bitr3i 277 . . . . . . . 8 ((∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏) ↔ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏))
128, 11sylib 218 . . . . . . 7 (𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) → ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏))
1312anim1ci 616 . . . . . 6 ((𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) → (𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏)))
14 3anass 1094 . . . . . . . 8 ((𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏) ↔ (𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ (𝑐𝑣𝑣𝑅𝑏)))
15142exbii 1849 . . . . . . 7 (∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏) ↔ ∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ (𝑐𝑣𝑣𝑅𝑏)))
16 19.42vv 1957 . . . . . . 7 (∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ (𝑐𝑣𝑣𝑅𝑏)) ↔ (𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏)))
1715, 16sylbbr 236 . . . . . 6 ((𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏)) → ∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
1813, 17syl 17 . . . . 5 ((𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) → ∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
1918reximi 3068 . . . 4 (∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))(𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) → ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
204, 19sylbir 235 . . 3 (∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) → ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
2120ralimi 3067 . 2 (∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
223, 21syl 17 1 ((dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴 → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054  Vcvv 3450   class class class wbr 5109   E cep 5539  ccnv 5639  dom cdm 5640  cres 5642  [cec 8671   / cqs 8672  cxrn 38163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-eprel 5540  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fo 6519  df-fv 6521  df-oprab 7393  df-1st 7970  df-2nd 7971  df-qs 8679  df-xrn 38348
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator