Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmqsblocks Structured version   Visualization version   GIF version

Theorem dmqsblocks 38818
Description: If the pet 38816 span (𝑅 ⋉ (' E | 𝐴)) partitions 𝐴, then every block 𝑢𝐴 is of the form [𝑣] for some 𝑣 that not only lies in the domain but also has at least one internal element 𝑐 and at least one 𝑅-target 𝑏 (cf. also the comments of qseq 38613). It makes explicit that pet 38816 gives active representatives for each block, without ever forcing 𝑣 = 𝑢. (Contributed by Peter Mazsa, 23-Nov-2025.)
Assertion
Ref Expression
dmqsblocks ((dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴 → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
Distinct variable groups:   𝐴,𝑏,𝑐,𝑢,𝑣   𝑅,𝑏,𝑐,𝑢,𝑣

Proof of Theorem dmqsblocks
StepHypRef Expression
1 qseq 38613 . . 3 ((dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴 ↔ ∀𝑢(𝑢𝐴 ↔ ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))))
2 eqab2 38210 . . 3 (∀𝑢(𝑢𝐴 ↔ ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)))
31, 2sylbi 217 . 2 ((dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴 → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)))
4 rexanid 3078 . . . 4 (∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))(𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) ↔ ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)))
5 eldmxrncnvepres2 38370 . . . . . . . . . 10 (𝑣 ∈ V → (𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝑣𝐴 ∧ ∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏)))
65elv 3449 . . . . . . . . 9 (𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝑣𝐴 ∧ ∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏))
7 3simpc 1150 . . . . . . . . 9 ((𝑣𝐴 ∧ ∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏) → (∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏))
86, 7sylbi 217 . . . . . . . 8 (𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) → (∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏))
9 exdistrv 1955 . . . . . . . . 9 (∃𝑐𝑏(𝑐𝑣𝑣𝑅𝑏) ↔ (∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏))
10 excom 2163 . . . . . . . . 9 (∃𝑐𝑏(𝑐𝑣𝑣𝑅𝑏) ↔ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏))
119, 10bitr3i 277 . . . . . . . 8 ((∃𝑐 𝑐𝑣 ∧ ∃𝑏 𝑣𝑅𝑏) ↔ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏))
128, 11sylib 218 . . . . . . 7 (𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) → ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏))
1312anim1ci 616 . . . . . 6 ((𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) → (𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏)))
14 3anass 1094 . . . . . . . 8 ((𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏) ↔ (𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ (𝑐𝑣𝑣𝑅𝑏)))
15142exbii 1849 . . . . . . 7 (∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏) ↔ ∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ (𝑐𝑣𝑣𝑅𝑏)))
16 19.42vv 1957 . . . . . . 7 (∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ (𝑐𝑣𝑣𝑅𝑏)) ↔ (𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏)))
1715, 16sylbbr 236 . . . . . 6 ((𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ ∃𝑏𝑐(𝑐𝑣𝑣𝑅𝑏)) → ∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
1813, 17syl 17 . . . . 5 ((𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) → ∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
1918reximi 3067 . . . 4 (∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))(𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴))) → ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
204, 19sylbir 235 . . 3 (∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) → ∃𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
2120ralimi 3066 . 2 (∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
223, 21syl 17 1 ((dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴 → ∀𝑢𝐴𝑣 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))∃𝑏𝑐(𝑢 = [𝑣](𝑅 ⋉ ( E ↾ 𝐴)) ∧ 𝑐𝑣𝑣𝑅𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3444   class class class wbr 5102   E cep 5530  ccnv 5630  dom cdm 5631  cres 5633  [cec 8646   / cqs 8647  cxrn 38141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-eprel 5531  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-oprab 7373  df-1st 7947  df-2nd 7948  df-qs 8654  df-xrn 38326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator