Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r2alan Structured version   Visualization version   GIF version

Theorem r2alan 36457
Description: Double restricted universal quantification, special case. (Contributed by Peter Mazsa, 17-Jun-2020.)
Assertion
Ref Expression
r2alan (∀𝑥𝑦(((𝑥𝐴𝑦𝐵) ∧ 𝜑) → 𝜓) ↔ ∀𝑥𝐴𝑦𝐵 (𝜑𝜓))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r2alan
StepHypRef Expression
1 impexp 452 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ 𝜑) → 𝜓) ↔ ((𝑥𝐴𝑦𝐵) → (𝜑𝜓)))
212albii 1820 . 2 (∀𝑥𝑦(((𝑥𝐴𝑦𝐵) ∧ 𝜑) → 𝜓) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → (𝜑𝜓)))
3 r2al 3187 . 2 (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → (𝜑𝜓)))
42, 3bitr4i 278 1 (∀𝑥𝑦(((𝑥𝐴𝑦𝐵) ∧ 𝜑) → 𝜓) ↔ ∀𝑥𝐴𝑦𝐵 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1537  wcel 2104  wral 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1780  df-ral 3062
This theorem is referenced by:  antisymrelres  36977
  Copyright terms: Public domain W3C validator