![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeq12i | Structured version Visualization version GIF version |
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
Ref | Expression |
---|---|
eqeq12i.1 | ⊢ 𝐴 = 𝐵 |
eqeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
eqeq12i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqeq1i 2740 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
3 | eqeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | eqeq2i 2748 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐵 = 𝐷) |
5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 |
This theorem is referenced by: neeq12i 3005 rabbi 3465 unineq 4294 vn0 4351 sbceqg 4418 sbceqi 4419 preq2b 4852 preqr2 4854 otth 5495 otthg 5496 rncoeq 5993 fresaunres1 6782 eqfnov 7562 mpo2eqb 7565 f1o2ndf1 8146 fprlem1 8324 wfrlem5OLD 8352 ecopovsym 8858 frrlem15 9795 karden 9933 adderpqlem 10992 mulerpqlem 10993 addcmpblnr 11107 ax1ne0 11198 addrid 11439 sq11i 14227 nn0opth2i 14307 oppgcntz 19398 opprdomnb 20734 isdomn4r 20736 islpir 21356 evlsval 22128 volfiniun 25596 dvmptfsum 26028 sltval2 27716 sltsolem1 27735 nosepnelem 27739 nolt02o 27755 axlowdimlem13 28984 usgredg2v 29259 issubgr 29303 clwlkcompbp 29815 pjneli 31752 indifbi 32548 madjusmdetlem1 33788 breprexp 34627 bnj553 34891 bnj1253 35010 gonanegoal 35337 goalrlem 35381 goalr 35382 fmlasucdisj 35384 satffunlem 35386 satffunlem1lem1 35387 satffunlem2lem1 35389 altopthsn 35943 bj-2upleq 36995 relowlpssretop 37347 iscrngo2 37984 extid 38292 cdleme18d 40278 fphpd 42804 oenassex 43308 rp-fakeuninass 43506 relexp0eq 43691 comptiunov2i 43696 clsk1indlem1 44035 ntrclskb 44059 onfrALTlem5 44540 onfrALTlem4 44541 onfrALTlem5VD 44883 onfrALTlem4VD 44884 dvnprodlem3 45904 sge0xadd 46391 reuabaiotaiota 47037 rrx2linest 48592 |
Copyright terms: Public domain | W3C validator |