![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeq12i | Structured version Visualization version GIF version |
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
Ref | Expression |
---|---|
eqeq12i.1 | ⊢ 𝐴 = 𝐵 |
eqeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
eqeq12i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqeq1i 2745 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
3 | eqeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | eqeq2i 2753 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐵 = 𝐷) |
5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 |
This theorem is referenced by: neeq12i 3013 rabbi 3475 unineq 4307 vn0 4368 sbceqg 4435 sbceqi 4436 preq2b 4872 preqr2 4874 otth 5504 otthg 5505 rncoeq 6002 fresaunres1 6794 eqfnov 7579 mpo2eqb 7582 f1o2ndf1 8163 fprlem1 8341 wfrlem5OLD 8369 ecopovsym 8877 frrlem15 9826 karden 9964 adderpqlem 11023 mulerpqlem 11024 addcmpblnr 11138 ax1ne0 11229 addrid 11470 sq11i 14240 nn0opth2i 14320 oppgcntz 19407 opprdomnb 20739 isdomn4r 20741 islpir 21361 evlsval 22133 volfiniun 25601 dvmptfsum 26033 sltval2 27719 sltsolem1 27738 nosepnelem 27742 nolt02o 27758 axlowdimlem13 28987 usgredg2v 29262 issubgr 29306 clwlkcompbp 29818 pjneli 31755 indifbi 32550 madjusmdetlem1 33773 breprexp 34610 bnj553 34874 bnj1253 34993 gonanegoal 35320 goalrlem 35364 goalr 35365 fmlasucdisj 35367 satffunlem 35369 satffunlem1lem1 35370 satffunlem2lem1 35372 altopthsn 35925 bj-2upleq 36978 relowlpssretop 37330 iscrngo2 37957 extid 38266 cdleme18d 40252 fphpd 42772 oenassex 43280 rp-fakeuninass 43478 relexp0eq 43663 comptiunov2i 43668 clsk1indlem1 44007 ntrclskb 44031 onfrALTlem5 44513 onfrALTlem4 44514 onfrALTlem5VD 44856 onfrALTlem4VD 44857 dvnprodlem3 45869 sge0xadd 46356 reuabaiotaiota 47002 rrx2linest 48476 |
Copyright terms: Public domain | W3C validator |