| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeq12i | Structured version Visualization version GIF version | ||
| Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqeq12i.1 | ⊢ 𝐴 = 𝐵 |
| eqeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| eqeq12i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqeq1i 2736 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| 3 | eqeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 3 | eqeq2i 2744 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐵 = 𝐷) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 |
| This theorem is referenced by: neeq12i 2994 rabbi 3425 unineq 4235 vn0 4292 sbceqg 4359 sbceqi 4360 preq2b 4796 preqr2 4798 otth 5422 otthg 5423 rncoeq 5920 fresaunres1 6696 eqfnov 7475 mpo2eqb 7478 f1o2ndf1 8052 fprlem1 8230 ecopovsym 8743 frrlem15 9650 karden 9788 adderpqlem 10845 mulerpqlem 10846 addcmpblnr 10960 ax1ne0 11051 addrid 11293 sq11i 14098 nn0opth2i 14178 oppgcntz 19276 opprdomnb 20632 isdomn4r 20634 islpir 21265 evlsval 22021 volfiniun 25475 dvmptfsum 25906 sltval2 27595 sltsolem1 27614 nosepnelem 27618 nolt02o 27634 axlowdimlem13 28932 usgredg2v 29205 issubgr 29249 clwlkcompbp 29760 pjneli 31703 indifbi 32500 madjusmdetlem1 33840 breprexp 34646 bnj553 34910 bnj1253 35029 gonanegoal 35396 goalrlem 35440 goalr 35441 fmlasucdisj 35443 satffunlem 35445 satffunlem1lem1 35446 satffunlem2lem1 35448 altopthsn 36003 bj-2upleq 37054 relowlpssretop 37406 iscrngo2 38045 extid 38352 cdleme18d 40342 fphpd 42857 oenassex 43359 rp-fakeuninass 43557 relexp0eq 43742 comptiunov2i 43747 clsk1indlem1 44086 ntrclskb 44110 onfrALTlem5 44583 onfrALTlem4 44584 onfrALTlem5VD 44925 onfrALTlem4VD 44926 dvnprodlem3 45994 sge0xadd 46481 reuabaiotaiota 47126 rrx2linest 48782 fucofvalne 49365 |
| Copyright terms: Public domain | W3C validator |