![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeq12i | Structured version Visualization version GIF version |
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
Ref | Expression |
---|---|
eqeq12i.1 | ⊢ 𝐴 = 𝐵 |
eqeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
eqeq12i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqeq1i 2738 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
3 | eqeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | eqeq2i 2746 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐵 = 𝐷) |
5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 |
This theorem is referenced by: neeq12i 3008 rabbi 3463 unineq 4278 vn0 4339 sbceqg 4410 sbceqi 4411 preq2b 4849 preqr2 4851 otth 5485 otthg 5486 rncoeq 5975 fresaunres1 6765 eqfnov 7538 mpo2eqb 7541 f1o2ndf1 8108 fprlem1 8285 wfrlem5OLD 8313 ecopovsym 8813 frrlem15 9752 karden 9890 adderpqlem 10949 mulerpqlem 10950 addcmpblnr 11064 ax1ne0 11155 addrid 11394 sq11i 14155 nn0opth2i 14231 oppgcntz 19231 islpir 20887 evlsval 21649 volfiniun 25064 dvmptfsum 25492 sltval2 27159 sltsolem1 27178 nosepnelem 27182 nolt02o 27198 axlowdimlem13 28212 usgredg2v 28484 issubgr 28528 clwlkcompbp 29039 pjneli 30976 indifbi 31758 madjusmdetlem1 32807 breprexp 33645 bnj553 33909 bnj1253 34028 gonanegoal 34343 goalrlem 34387 goalr 34388 fmlasucdisj 34390 satffunlem 34392 satffunlem1lem1 34393 satffunlem2lem1 34395 altopthsn 34933 bj-2upleq 35893 relowlpssretop 36245 iscrngo2 36865 extid 37179 cdleme18d 39166 fphpd 41554 oenassex 42068 rp-fakeuninass 42267 relexp0eq 42452 comptiunov2i 42457 clsk1indlem1 42796 ntrclskb 42820 onfrALTlem5 43303 onfrALTlem4 43304 onfrALTlem5VD 43646 onfrALTlem4VD 43647 dvnprodlem3 44664 sge0xadd 45151 reuabaiotaiota 45795 rrx2linest 47428 |
Copyright terms: Public domain | W3C validator |