| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeq12i | Structured version Visualization version GIF version | ||
| Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqeq12i.1 | ⊢ 𝐴 = 𝐵 |
| eqeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| eqeq12i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqeq1i 2741 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| 3 | eqeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 3 | eqeq2i 2749 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐵 = 𝐷) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 |
| This theorem is referenced by: neeq12i 2999 rabbi 3451 unineq 4268 vn0 4325 sbceqg 4392 sbceqi 4393 preq2b 4828 preqr2 4830 otth 5464 otthg 5465 rncoeq 5964 fresaunres1 6756 eqfnov 7541 mpo2eqb 7544 f1o2ndf1 8126 fprlem1 8304 wfrlem5OLD 8332 ecopovsym 8838 frrlem15 9776 karden 9914 adderpqlem 10973 mulerpqlem 10974 addcmpblnr 11088 ax1ne0 11179 addrid 11420 sq11i 14214 nn0opth2i 14294 oppgcntz 19352 opprdomnb 20682 isdomn4r 20684 islpir 21294 evlsval 22049 volfiniun 25505 dvmptfsum 25936 sltval2 27625 sltsolem1 27644 nosepnelem 27648 nolt02o 27664 axlowdimlem13 28938 usgredg2v 29211 issubgr 29255 clwlkcompbp 29769 pjneli 31709 indifbi 32506 madjusmdetlem1 33863 breprexp 34670 bnj553 34934 bnj1253 35053 gonanegoal 35379 goalrlem 35423 goalr 35424 fmlasucdisj 35426 satffunlem 35428 satffunlem1lem1 35429 satffunlem2lem1 35431 altopthsn 35984 bj-2upleq 37035 relowlpssretop 37387 iscrngo2 38026 extid 38333 cdleme18d 40319 fphpd 42806 oenassex 43309 rp-fakeuninass 43507 relexp0eq 43692 comptiunov2i 43697 clsk1indlem1 44036 ntrclskb 44060 onfrALTlem5 44534 onfrALTlem4 44535 onfrALTlem5VD 44876 onfrALTlem4VD 44877 dvnprodlem3 45944 sge0xadd 46431 reuabaiotaiota 47083 rrx2linest 48689 fucofvalne 49203 |
| Copyright terms: Public domain | W3C validator |