| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeq12i | Structured version Visualization version GIF version | ||
| Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqeq12i.1 | ⊢ 𝐴 = 𝐵 |
| eqeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| eqeq12i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqeq1i 2734 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| 3 | eqeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 3 | eqeq2i 2742 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐵 = 𝐷) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: neeq12i 2991 rabbi 3433 unineq 4247 vn0 4304 sbceqg 4371 sbceqi 4372 preq2b 4807 preqr2 4809 otth 5439 otthg 5440 rncoeq 5932 fresaunres1 6715 eqfnov 7498 mpo2eqb 7501 f1o2ndf1 8078 fprlem1 8256 ecopovsym 8769 frrlem15 9686 karden 9824 adderpqlem 10883 mulerpqlem 10884 addcmpblnr 10998 ax1ne0 11089 addrid 11330 sq11i 14132 nn0opth2i 14212 oppgcntz 19278 opprdomnb 20637 isdomn4r 20639 islpir 21270 evlsval 22026 volfiniun 25481 dvmptfsum 25912 sltval2 27601 sltsolem1 27620 nosepnelem 27624 nolt02o 27640 axlowdimlem13 28934 usgredg2v 29207 issubgr 29251 clwlkcompbp 29762 pjneli 31702 indifbi 32499 madjusmdetlem1 33810 breprexp 34617 bnj553 34881 bnj1253 35000 gonanegoal 35332 goalrlem 35376 goalr 35377 fmlasucdisj 35379 satffunlem 35381 satffunlem1lem1 35382 satffunlem2lem1 35384 altopthsn 35942 bj-2upleq 36993 relowlpssretop 37345 iscrngo2 37984 extid 38291 cdleme18d 40282 fphpd 42797 oenassex 43300 rp-fakeuninass 43498 relexp0eq 43683 comptiunov2i 43688 clsk1indlem1 44027 ntrclskb 44051 onfrALTlem5 44525 onfrALTlem4 44526 onfrALTlem5VD 44867 onfrALTlem4VD 44868 dvnprodlem3 45939 sge0xadd 46426 reuabaiotaiota 47081 rrx2linest 48724 fucofvalne 49307 |
| Copyright terms: Public domain | W3C validator |