Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeq12i | Structured version Visualization version GIF version |
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
Ref | Expression |
---|---|
eqeq12i.1 | ⊢ 𝐴 = 𝐵 |
eqeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
eqeq12i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqeq1i 2743 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
3 | eqeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | eqeq2i 2751 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐵 = 𝐷) |
5 | 2, 4 | bitri 274 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 |
This theorem is referenced by: neeq12i 3009 rabbi 3309 unineq 4208 vn0 4269 sbceqg 4340 sbceqi 4341 preq2b 4775 preqr2 4777 otth 5393 otthg 5394 rncoeq 5873 fresaunres1 6631 eqfnov 7381 mpo2eqb 7384 f1o2ndf1 7934 fprlem1 8087 wfrlem5OLD 8115 ecopovsym 8566 frrlem15 9446 karden 9584 adderpqlem 10641 mulerpqlem 10642 addcmpblnr 10756 ax1ne0 10847 addid1 11085 sq11i 13836 nn0opth2i 13913 oppgcntz 18886 islpir 20433 evlsval 21206 volfiniun 24616 dvmptfsum 25044 axlowdimlem13 27225 usgredg2v 27497 issubgr 27541 clwlkcompbp 28051 pjneli 29986 indifbi 30769 madjusmdetlem1 31679 breprexp 32513 bnj553 32778 bnj1253 32897 gonanegoal 33214 goalrlem 33258 goalr 33259 fmlasucdisj 33261 satffunlem 33263 satffunlem1lem1 33264 satffunlem2lem1 33266 sltval2 33786 sltsolem1 33805 nosepnelem 33809 nolt02o 33825 altopthsn 34190 bj-2upleq 35129 relowlpssretop 35462 iscrngo2 36082 extid 36373 cdleme18d 38236 fphpd 40554 rp-fakeuninass 41021 relexp0eq 41198 comptiunov2i 41203 clsk1indlem1 41544 ntrclskb 41568 onfrALTlem5 42051 onfrALTlem4 42052 onfrALTlem5VD 42394 onfrALTlem4VD 42395 dvnprodlem3 43379 sge0xadd 43863 reuabaiotaiota 44466 rrx2linest 45976 |
Copyright terms: Public domain | W3C validator |