| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeq12i | Structured version Visualization version GIF version | ||
| Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqeq12i.1 | ⊢ 𝐴 = 𝐵 |
| eqeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| eqeq12i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqeq1i 2734 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| 3 | eqeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 3 | eqeq2i 2742 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐵 = 𝐷) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: neeq12i 2991 rabbi 3436 unineq 4251 vn0 4308 sbceqg 4375 sbceqi 4376 preq2b 4811 preqr2 4813 otth 5444 otthg 5445 rncoeq 5943 fresaunres1 6733 eqfnov 7518 mpo2eqb 7521 f1o2ndf1 8101 fprlem1 8279 ecopovsym 8792 frrlem15 9710 karden 9848 adderpqlem 10907 mulerpqlem 10908 addcmpblnr 11022 ax1ne0 11113 addrid 11354 sq11i 14156 nn0opth2i 14236 oppgcntz 19296 opprdomnb 20626 isdomn4r 20628 islpir 21238 evlsval 21993 volfiniun 25448 dvmptfsum 25879 sltval2 27568 sltsolem1 27587 nosepnelem 27591 nolt02o 27607 axlowdimlem13 28881 usgredg2v 29154 issubgr 29198 clwlkcompbp 29712 pjneli 31652 indifbi 32449 madjusmdetlem1 33817 breprexp 34624 bnj553 34888 bnj1253 35007 gonanegoal 35339 goalrlem 35383 goalr 35384 fmlasucdisj 35386 satffunlem 35388 satffunlem1lem1 35389 satffunlem2lem1 35391 altopthsn 35949 bj-2upleq 37000 relowlpssretop 37352 iscrngo2 37991 extid 38298 cdleme18d 40289 fphpd 42804 oenassex 43307 rp-fakeuninass 43505 relexp0eq 43690 comptiunov2i 43695 clsk1indlem1 44034 ntrclskb 44058 onfrALTlem5 44532 onfrALTlem4 44533 onfrALTlem5VD 44874 onfrALTlem4VD 44875 dvnprodlem3 45946 sge0xadd 46433 reuabaiotaiota 47085 rrx2linest 48728 fucofvalne 49311 |
| Copyright terms: Public domain | W3C validator |