| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeq12i | Structured version Visualization version GIF version | ||
| Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqeq12i.1 | ⊢ 𝐴 = 𝐵 |
| eqeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| eqeq12i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqeq1i 2734 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| 3 | eqeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 3 | eqeq2i 2742 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐵 = 𝐷) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: neeq12i 2991 rabbi 3433 unineq 4247 vn0 4304 sbceqg 4371 sbceqi 4372 preq2b 4807 preqr2 4809 otth 5439 otthg 5440 rncoeq 5932 fresaunres1 6715 eqfnov 7498 mpo2eqb 7501 f1o2ndf1 8078 fprlem1 8256 ecopovsym 8769 frrlem15 9686 karden 9824 adderpqlem 10883 mulerpqlem 10884 addcmpblnr 10998 ax1ne0 11089 addrid 11330 sq11i 14132 nn0opth2i 14212 oppgcntz 19272 opprdomnb 20602 isdomn4r 20604 islpir 21214 evlsval 21969 volfiniun 25424 dvmptfsum 25855 sltval2 27544 sltsolem1 27563 nosepnelem 27567 nolt02o 27583 axlowdimlem13 28857 usgredg2v 29130 issubgr 29174 clwlkcompbp 29685 pjneli 31625 indifbi 32422 madjusmdetlem1 33790 breprexp 34597 bnj553 34861 bnj1253 34980 gonanegoal 35312 goalrlem 35356 goalr 35357 fmlasucdisj 35359 satffunlem 35361 satffunlem1lem1 35362 satffunlem2lem1 35364 altopthsn 35922 bj-2upleq 36973 relowlpssretop 37325 iscrngo2 37964 extid 38271 cdleme18d 40262 fphpd 42777 oenassex 43280 rp-fakeuninass 43478 relexp0eq 43663 comptiunov2i 43668 clsk1indlem1 44007 ntrclskb 44031 onfrALTlem5 44505 onfrALTlem4 44506 onfrALTlem5VD 44847 onfrALTlem4VD 44848 dvnprodlem3 45919 sge0xadd 46406 reuabaiotaiota 47061 rrx2linest 48704 fucofvalne 49287 |
| Copyright terms: Public domain | W3C validator |