![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeq12i | Structured version Visualization version GIF version |
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
Ref | Expression |
---|---|
eqeq12i.1 | ⊢ 𝐴 = 𝐵 |
eqeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
eqeq12i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqeq1i 2738 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
3 | eqeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | eqeq2i 2746 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐵 = 𝐷) |
5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 |
This theorem is referenced by: neeq12i 3008 rabbi 3463 unineq 4278 vn0 4339 sbceqg 4410 sbceqi 4411 preq2b 4849 preqr2 4851 otth 5485 otthg 5486 rncoeq 5975 fresaunres1 6765 eqfnov 7538 mpo2eqb 7541 f1o2ndf1 8108 fprlem1 8285 wfrlem5OLD 8313 ecopovsym 8813 frrlem15 9752 karden 9890 adderpqlem 10949 mulerpqlem 10950 addcmpblnr 11064 ax1ne0 11155 addrid 11394 sq11i 14155 nn0opth2i 14231 oppgcntz 19231 islpir 20887 evlsval 21649 volfiniun 25064 dvmptfsum 25492 sltval2 27159 sltsolem1 27178 nosepnelem 27182 nolt02o 27198 axlowdimlem13 28243 usgredg2v 28515 issubgr 28559 clwlkcompbp 29070 pjneli 31007 indifbi 31789 madjusmdetlem1 32838 breprexp 33676 bnj553 33940 bnj1253 34059 gonanegoal 34374 goalrlem 34418 goalr 34419 fmlasucdisj 34421 satffunlem 34423 satffunlem1lem1 34424 satffunlem2lem1 34426 altopthsn 34964 bj-2upleq 35941 relowlpssretop 36293 iscrngo2 36913 extid 37227 cdleme18d 39214 fphpd 41602 oenassex 42116 rp-fakeuninass 42315 relexp0eq 42500 comptiunov2i 42505 clsk1indlem1 42844 ntrclskb 42868 onfrALTlem5 43351 onfrALTlem4 43352 onfrALTlem5VD 43694 onfrALTlem4VD 43695 dvnprodlem3 44712 sge0xadd 45199 reuabaiotaiota 45843 rrx2linest 47476 |
Copyright terms: Public domain | W3C validator |