| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeq12i | Structured version Visualization version GIF version | ||
| Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqeq12i.1 | ⊢ 𝐴 = 𝐵 |
| eqeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| eqeq12i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqeq1i 2734 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| 3 | eqeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 3 | eqeq2i 2742 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐵 = 𝐷) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: neeq12i 2991 rabbi 3425 unineq 4239 vn0 4296 sbceqg 4363 sbceqi 4364 preq2b 4798 preqr2 4800 otth 5427 otthg 5428 rncoeq 5923 fresaunres1 6697 eqfnov 7478 mpo2eqb 7481 f1o2ndf1 8055 fprlem1 8233 ecopovsym 8746 frrlem15 9653 karden 9791 adderpqlem 10848 mulerpqlem 10849 addcmpblnr 10963 ax1ne0 11054 addrid 11296 sq11i 14098 nn0opth2i 14178 oppgcntz 19243 opprdomnb 20602 isdomn4r 20604 islpir 21235 evlsval 21991 volfiniun 25446 dvmptfsum 25877 sltval2 27566 sltsolem1 27585 nosepnelem 27589 nolt02o 27605 axlowdimlem13 28899 usgredg2v 29172 issubgr 29216 clwlkcompbp 29727 pjneli 31667 indifbi 32464 madjusmdetlem1 33794 breprexp 34601 bnj553 34865 bnj1253 34984 gonanegoal 35325 goalrlem 35369 goalr 35370 fmlasucdisj 35372 satffunlem 35374 satffunlem1lem1 35375 satffunlem2lem1 35377 altopthsn 35935 bj-2upleq 36986 relowlpssretop 37338 iscrngo2 37977 extid 38284 cdleme18d 40274 fphpd 42789 oenassex 43291 rp-fakeuninass 43489 relexp0eq 43674 comptiunov2i 43679 clsk1indlem1 44018 ntrclskb 44042 onfrALTlem5 44516 onfrALTlem4 44517 onfrALTlem5VD 44858 onfrALTlem4VD 44859 dvnprodlem3 45929 sge0xadd 46416 reuabaiotaiota 47071 rrx2linest 48727 fucofvalne 49310 |
| Copyright terms: Public domain | W3C validator |