Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeq12i | Structured version Visualization version GIF version |
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
Ref | Expression |
---|---|
eqeq12i.1 | ⊢ 𝐴 = 𝐵 |
eqeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
eqeq12i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqeq1i 2743 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
3 | eqeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | eqeq2i 2751 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐵 = 𝐷) |
5 | 2, 4 | bitri 274 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 |
This theorem is referenced by: neeq12i 3010 rabbi 3316 unineq 4211 vn0 4272 sbceqg 4343 sbceqi 4344 preq2b 4778 preqr2 4780 otth 5399 otthg 5400 rncoeq 5884 fresaunres1 6647 eqfnov 7403 mpo2eqb 7406 f1o2ndf1 7963 fprlem1 8116 wfrlem5OLD 8144 ecopovsym 8608 frrlem15 9515 karden 9653 adderpqlem 10710 mulerpqlem 10711 addcmpblnr 10825 ax1ne0 10916 addid1 11155 sq11i 13908 nn0opth2i 13985 oppgcntz 18971 islpir 20520 evlsval 21296 volfiniun 24711 dvmptfsum 25139 axlowdimlem13 27322 usgredg2v 27594 issubgr 27638 clwlkcompbp 28150 pjneli 30085 indifbi 30868 madjusmdetlem1 31777 breprexp 32613 bnj553 32878 bnj1253 32997 gonanegoal 33314 goalrlem 33358 goalr 33359 fmlasucdisj 33361 satffunlem 33363 satffunlem1lem1 33364 satffunlem2lem1 33366 sltval2 33859 sltsolem1 33878 nosepnelem 33882 nolt02o 33898 altopthsn 34263 bj-2upleq 35202 relowlpssretop 35535 iscrngo2 36155 extid 36446 cdleme18d 38309 fphpd 40638 rp-fakeuninass 41123 relexp0eq 41309 comptiunov2i 41314 clsk1indlem1 41655 ntrclskb 41679 onfrALTlem5 42162 onfrALTlem4 42163 onfrALTlem5VD 42505 onfrALTlem4VD 42506 dvnprodlem3 43489 sge0xadd 43973 reuabaiotaiota 44579 rrx2linest 46088 |
Copyright terms: Public domain | W3C validator |