|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > eqtr2OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of eqtr2 as of 24-Oct-2024. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| eqtr2OLD | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqcom 2744 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 2 | eqtr 2760 | . 2 ⊢ ((𝐵 = 𝐴 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) | |
| 3 | 1, 2 | sylanb 581 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2729 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |