| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqtr3 | Structured version Visualization version GIF version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2741 | . 2 ⊢ (𝐵 = 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 = 𝐶)) | |
| 2 | 1 | biimparc 479 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: neneor 3025 moeq 3675 euind 3692 reuind 3721 disjeq0 4415 ssprsseq 4785 mosneq 4802 prnebg 4816 prnesn 4820 prel12g 4824 3elpr2eq 4866 eusv1 5341 xpcan 6137 xpcan2 6138 funopg 6534 funopdmsn 7104 funsndifnop 7105 fvf1pr 7264 resf1extb 7890 wfr3g 8275 oawordeulem 8495 nnasmo 8604 en1eqsn 9195 ixpfi2 9277 frr3g 9685 isf32lem2 10283 fpwwe2lem12 10571 1re 11150 receu 11799 xrlttri 13075 injresinjlem 13724 cshwsexaOLD 14766 fsumparts 15748 odd2np1 16287 prmreclem2 16864 divsfval 17486 isprs 18233 psrn 18510 grpinveu 18882 symgextf1 19327 symgfixf1 19343 efgrelexlemb 19656 lspextmo 20939 evlseu 21966 tgcmp 23264 sqf11 27025 dchrisumlem2 27377 sltsolem1 27563 nocvxminlem 27665 divsmo 28063 axlowdimlem15 28859 axcontlem2 28868 wlksoneq1eq2 29566 spthonepeq 29655 uspgrn2crct 29711 wwlksnextinj 29802 frgrwopreglem5lem 30222 numclwwlk1lem2f1 30259 nsnlplig 30383 nsnlpligALT 30384 grpoinveu 30421 5oalem4 31559 rnbra 32009 xreceu 32815 bnj594 34875 bnj953 34902 fnsingle 35880 funimage 35889 funtransport 35992 funray 36101 funline 36103 hilbert1.2 36116 lineintmo 36118 bj-bary1 37273 poimirlem13 37600 poimirlem14 37601 poimirlem17 37604 poimirlem27 37614 antisymressn 38408 disjdmqscossss 38768 prter2 38847 cdleme 40527 rediveud 42404 kelac2lem 43026 frege124d 43723 2ffzoeq 47301 sprsymrelf1lem 47465 paireqne 47485 usgrexmpl2trifr 48001 gpg5grlic 48057 pgnbgreunbgrlem2 48080 mof0ALT 48801 mofsn 48805 f1omoOLD 48855 oppcendc 48980 |
| Copyright terms: Public domain | W3C validator |