| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqtr3 | Structured version Visualization version GIF version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2743 | . 2 ⊢ (𝐵 = 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 = 𝐶)) | |
| 2 | 1 | biimparc 479 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 |
| This theorem is referenced by: neneor 3028 moeq 3661 euind 3678 reuind 3707 disjeq0 4401 ssprsseq 4772 mosneq 4789 prnebg 4803 prnesn 4807 prel12g 4811 3elpr2eq 4853 eusv1 5324 xpcan 6118 xpcan2 6119 funopg 6510 funopdmsn 7078 funsndifnop 7079 fvf1pr 7236 resf1extb 7859 wfr3g 8244 oawordeulem 8464 nnasmo 8573 en1eqsn 9154 ixpfi2 9229 frr3g 9644 isf32lem2 10240 fpwwe2lem12 10528 1re 11107 receu 11757 xrlttri 13033 injresinjlem 13685 fsumparts 15708 odd2np1 16247 prmreclem2 16824 divsfval 17446 isprs 18197 psrn 18476 grpinveu 18882 symgextf1 19328 symgfixf1 19344 efgrelexlemb 19657 lspextmo 20985 evlseu 22013 tgcmp 23311 sqf11 27071 dchrisumlem2 27423 sltsolem1 27609 nocvxminlem 27712 divsmo 28118 axlowdimlem15 28929 axcontlem2 28938 wlksoneq1eq2 29636 spthonepeq 29725 uspgrn2crct 29781 wwlksnextinj 29872 frgrwopreglem5lem 30292 numclwwlk1lem2f1 30329 nsnlplig 30453 nsnlpligALT 30454 grpoinveu 30491 5oalem4 31629 rnbra 32079 xreceu 32894 bnj594 34916 bnj953 34943 fnsingle 35953 funimage 35962 funtransport 36065 funray 36174 funline 36176 hilbert1.2 36189 lineintmo 36191 bj-bary1 37346 poimirlem13 37673 poimirlem14 37674 poimirlem17 37677 poimirlem27 37687 antisymressn 38481 disjdmqscossss 38841 prter2 38920 cdleme 40599 rediveud 42476 kelac2lem 43097 frege124d 43794 2ffzoeq 47358 sprsymrelf1lem 47522 paireqne 47542 usgrexmpl2trifr 48068 gpg5grlic 48125 pgnbgreunbgrlem2 48148 mof0ALT 48871 mofsn 48875 f1omoOLD 48925 oppcendc 49050 |
| Copyright terms: Public domain | W3C validator |