Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqtr3 | Structured version Visualization version GIF version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
Ref | Expression |
---|---|
eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2751 | . 2 ⊢ (𝐵 = 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 = 𝐶)) | |
2 | 1 | biimparc 480 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2731 |
This theorem is referenced by: neneor 3045 moeq 3643 euind 3660 reuind 3689 disjeq0 4390 ssprsseq 4759 mosneq 4774 prnebg 4787 prnesn 4791 prel12g 4795 3elpr2eq 4839 eusv1 5315 xpcan 6084 xpcan2 6085 funopg 6475 funopdmsn 7031 funsndifnop 7032 mpofunOLD 7408 wfr3g 8147 oawordeulem 8394 nnasmo 8502 ixpfi2 9126 frr3g 9523 isf32lem2 10119 fpwwe2lem12 10407 1re 10984 receu 11629 xrlttri 12882 injresinjlem 13516 cshwsexa 14546 fsumparts 15527 odd2np1 16059 prmreclem2 16627 divsfval 17267 isprs 18024 psrn 18302 grpinveu 18623 symgextf1 19038 symgfixf1 19054 efgrelexlemb 19365 lspextmo 20327 evlseu 21302 tgcmp 22561 sqf11 26297 dchrisumlem2 26647 axlowdimlem15 27333 axcontlem2 27342 wlksoneq1eq2 28041 spthonepeq 28129 uspgrn2crct 28182 wwlksnextinj 28273 frgrwopreglem5lem 28693 numclwwlk1lem2f1 28730 nsnlplig 28852 nsnlpligALT 28853 grpoinveu 28890 5oalem4 30028 rnbra 30478 xreceu 31205 bnj594 32901 bnj953 32928 sltsolem1 33887 nocvxminlem 33981 fnsingle 34230 funimage 34239 funtransport 34342 funray 34451 funline 34453 hilbert1.2 34466 lineintmo 34468 bj-bary1 35492 poimirlem13 35799 poimirlem14 35800 poimirlem17 35803 poimirlem27 35813 prter2 36902 cdleme 38581 kelac2lem 40896 frege124d 41376 2ffzoeq 44831 sprsymrelf1lem 44954 paireqne 44974 mof0ALT 46178 mofsn 46182 f1omo 46199 |
Copyright terms: Public domain | W3C validator |