Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqtr3 | Structured version Visualization version GIF version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
Ref | Expression |
---|---|
eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2749 | . 2 ⊢ (𝐵 = 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 = 𝐶)) | |
2 | 1 | biimparc 483 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-cleq 2729 |
This theorem is referenced by: neneor 3041 moeq 3620 euind 3637 reuind 3666 disjeq0 4370 ssprsseq 4738 mosneq 4753 prnebg 4766 prnesn 4770 prel12g 4774 3elpr2eq 4818 eusv1 5284 xpcan 6039 xpcan2 6040 funopg 6414 funopdmsn 6965 funsndifnop 6966 mpofunOLD 7335 wfr3g 8053 oawordeulem 8282 ixpfi2 8974 frr3g 9372 isf32lem2 9968 fpwwe2lem12 10256 1re 10833 receu 11477 xrlttri 12729 injresinjlem 13362 cshwsexa 14389 fsumparts 15370 odd2np1 15902 prmreclem2 16470 divsfval 17052 isprs 17804 psrn 18081 grpinveu 18402 symgextf1 18813 symgfixf1 18829 efgrelexlemb 19140 lspextmo 20093 evlseu 21043 tgcmp 22298 sqf11 26021 dchrisumlem2 26371 axlowdimlem15 27047 axcontlem2 27056 wlksoneq1eq2 27752 spthonepeq 27839 uspgrn2crct 27892 wwlksnextinj 27983 frgrwopreglem5lem 28403 numclwwlk1lem2f1 28440 nsnlplig 28562 nsnlpligALT 28563 grpoinveu 28600 5oalem4 29738 rnbra 30188 xreceu 30916 bnj594 32605 bnj953 32632 nnasmo 33409 sltsolem1 33615 nocvxminlem 33709 fnsingle 33958 funimage 33967 funtransport 34070 funray 34179 funline 34181 hilbert1.2 34194 lineintmo 34196 bj-bary1 35217 poimirlem13 35527 poimirlem14 35528 poimirlem17 35531 poimirlem27 35541 prter2 36632 cdleme 38311 kelac2lem 40592 frege124d 41046 2ffzoeq 44493 sprsymrelf1lem 44616 paireqne 44636 mof0ALT 45840 mofsn 45844 f1omo 45861 |
Copyright terms: Public domain | W3C validator |