![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqtr3 | Structured version Visualization version GIF version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
Ref | Expression |
---|---|
eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2745 | . 2 ⊢ (𝐵 = 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 = 𝐶)) | |
2 | 1 | biimparc 481 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 |
This theorem is referenced by: neneor 3043 moeq 3704 euind 3721 reuind 3750 disjeq0 4456 ssprsseq 4829 mosneq 4844 prnebg 4857 prnesn 4861 prel12g 4865 3elpr2eq 4908 eusv1 5390 xpcan 6176 xpcan2 6177 funopg 6583 funopdmsn 7148 funsndifnop 7149 mpofunOLD 7533 wfr3g 8307 oawordeulem 8554 nnasmo 8662 en1eqsn 9274 ixpfi2 9350 frr3g 9751 isf32lem2 10349 fpwwe2lem12 10637 1re 11214 receu 11859 xrlttri 13118 injresinjlem 13752 cshwsexaOLD 14775 fsumparts 15752 odd2np1 16284 prmreclem2 16850 divsfval 17493 isprs 18250 psrn 18528 grpinveu 18859 symgextf1 19289 symgfixf1 19305 efgrelexlemb 19618 lspextmo 20667 evlseu 21646 tgcmp 22905 sqf11 26643 dchrisumlem2 26993 sltsolem1 27178 nocvxminlem 27279 divsmo 27634 axlowdimlem15 28214 axcontlem2 28223 wlksoneq1eq2 28921 spthonepeq 29009 uspgrn2crct 29062 wwlksnextinj 29153 frgrwopreglem5lem 29573 numclwwlk1lem2f1 29610 nsnlplig 29734 nsnlpligALT 29735 grpoinveu 29772 5oalem4 30910 rnbra 31360 xreceu 32088 bnj594 33923 bnj953 33950 fnsingle 34891 funimage 34900 funtransport 35003 funray 35112 funline 35114 hilbert1.2 35127 lineintmo 35129 bj-bary1 36193 poimirlem13 36501 poimirlem14 36502 poimirlem17 36505 poimirlem27 36515 antisymressn 37314 disjdmqscossss 37673 prter2 37751 cdleme 39431 kelac2lem 41806 frege124d 42512 2ffzoeq 46036 sprsymrelf1lem 46159 paireqne 46179 mof0ALT 47506 mofsn 47510 f1omo 47527 |
Copyright terms: Public domain | W3C validator |