| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqtr3 | Structured version Visualization version GIF version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2747 | . 2 ⊢ (𝐵 = 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 = 𝐶)) | |
| 2 | 1 | biimparc 479 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 |
| This theorem is referenced by: neneor 3032 moeq 3690 euind 3707 reuind 3736 disjeq0 4431 ssprsseq 4801 mosneq 4818 prnebg 4832 prnesn 4836 prel12g 4840 3elpr2eq 4882 eusv1 5361 xpcan 6165 xpcan2 6166 funopg 6570 funopdmsn 7140 funsndifnop 7141 fvf1pr 7300 resf1extb 7930 wfr3g 8321 oawordeulem 8566 nnasmo 8675 en1eqsn 9280 ixpfi2 9362 frr3g 9770 isf32lem2 10368 fpwwe2lem12 10656 1re 11235 receu 11882 xrlttri 13155 injresinjlem 13803 cshwsexaOLD 14843 fsumparts 15822 odd2np1 16360 prmreclem2 16937 divsfval 17561 isprs 18308 psrn 18585 grpinveu 18957 symgextf1 19402 symgfixf1 19418 efgrelexlemb 19731 lspextmo 21014 evlseu 22041 tgcmp 23339 sqf11 27101 dchrisumlem2 27453 sltsolem1 27639 nocvxminlem 27741 divsmo 28139 axlowdimlem15 28935 axcontlem2 28944 wlksoneq1eq2 29644 spthonepeq 29734 uspgrn2crct 29790 wwlksnextinj 29881 frgrwopreglem5lem 30301 numclwwlk1lem2f1 30338 nsnlplig 30462 nsnlpligALT 30463 grpoinveu 30500 5oalem4 31638 rnbra 32088 xreceu 32896 bnj594 34943 bnj953 34970 fnsingle 35937 funimage 35946 funtransport 36049 funray 36158 funline 36160 hilbert1.2 36173 lineintmo 36175 bj-bary1 37330 poimirlem13 37657 poimirlem14 37658 poimirlem17 37661 poimirlem27 37671 antisymressn 38462 disjdmqscossss 38821 prter2 38899 cdleme 40579 kelac2lem 43088 frege124d 43785 2ffzoeq 47356 sprsymrelf1lem 47505 paireqne 47525 usgrexmpl2trifr 48041 gpg5grlic 48093 mof0ALT 48818 mofsn 48822 f1omo 48868 oppcendc 48993 |
| Copyright terms: Public domain | W3C validator |