![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqtr3 | Structured version Visualization version GIF version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
Ref | Expression |
---|---|
eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2752 | . 2 ⊢ (𝐵 = 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 = 𝐶)) | |
2 | 1 | biimparc 479 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 |
This theorem is referenced by: neneor 3048 moeq 3729 euind 3746 reuind 3775 disjeq0 4479 ssprsseq 4850 mosneq 4867 prnebg 4880 prnesn 4884 prel12g 4888 3elpr2eq 4930 eusv1 5409 xpcan 6207 xpcan2 6208 funopg 6612 funopdmsn 7184 funsndifnop 7185 fvf1pr 7343 wfr3g 8363 oawordeulem 8610 nnasmo 8719 en1eqsn 9336 ixpfi2 9420 frr3g 9825 isf32lem2 10423 fpwwe2lem12 10711 1re 11290 receu 11935 xrlttri 13201 injresinjlem 13837 cshwsexaOLD 14873 fsumparts 15854 odd2np1 16389 prmreclem2 16964 divsfval 17607 isprs 18367 psrn 18645 grpinveu 19014 symgextf1 19463 symgfixf1 19479 efgrelexlemb 19792 lspextmo 21078 evlseu 22130 tgcmp 23430 sqf11 27200 dchrisumlem2 27552 sltsolem1 27738 nocvxminlem 27840 divsmo 28228 axlowdimlem15 28989 axcontlem2 28998 wlksoneq1eq2 29700 spthonepeq 29788 uspgrn2crct 29841 wwlksnextinj 29932 frgrwopreglem5lem 30352 numclwwlk1lem2f1 30389 nsnlplig 30513 nsnlpligALT 30514 grpoinveu 30551 5oalem4 31689 rnbra 32139 xreceu 32886 bnj594 34888 bnj953 34915 fnsingle 35883 funimage 35892 funtransport 35995 funray 36104 funline 36106 hilbert1.2 36119 lineintmo 36121 bj-bary1 37278 poimirlem13 37593 poimirlem14 37594 poimirlem17 37597 poimirlem27 37607 antisymressn 38400 disjdmqscossss 38759 prter2 38837 cdleme 40517 kelac2lem 43021 frege124d 43723 2ffzoeq 47242 sprsymrelf1lem 47365 paireqne 47385 usgrexmpl2trifr 47852 mof0ALT 48553 mofsn 48557 f1omo 48574 |
Copyright terms: Public domain | W3C validator |