| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqtr3 | Structured version Visualization version GIF version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2741 | . 2 ⊢ (𝐵 = 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 = 𝐶)) | |
| 2 | 1 | biimparc 479 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: neneor 3025 moeq 3667 euind 3684 reuind 3713 disjeq0 4407 ssprsseq 4776 mosneq 4793 prnebg 4807 prnesn 4811 prel12g 4815 3elpr2eq 4857 eusv1 5330 xpcan 6125 xpcan2 6126 funopg 6516 funopdmsn 7084 funsndifnop 7085 fvf1pr 7244 resf1extb 7867 wfr3g 8252 oawordeulem 8472 nnasmo 8581 en1eqsn 9164 ixpfi2 9240 frr3g 9652 isf32lem2 10248 fpwwe2lem12 10536 1re 11115 receu 11765 xrlttri 13041 injresinjlem 13690 cshwsexaOLD 14731 fsumparts 15713 odd2np1 16252 prmreclem2 16829 divsfval 17451 isprs 18202 psrn 18481 grpinveu 18853 symgextf1 19300 symgfixf1 19316 efgrelexlemb 19629 lspextmo 20960 evlseu 21988 tgcmp 23286 sqf11 27047 dchrisumlem2 27399 sltsolem1 27585 nocvxminlem 27688 divsmo 28092 axlowdimlem15 28901 axcontlem2 28910 wlksoneq1eq2 29608 spthonepeq 29697 uspgrn2crct 29753 wwlksnextinj 29844 frgrwopreglem5lem 30264 numclwwlk1lem2f1 30301 nsnlplig 30425 nsnlpligALT 30426 grpoinveu 30463 5oalem4 31601 rnbra 32051 xreceu 32862 bnj594 34879 bnj953 34906 fnsingle 35893 funimage 35902 funtransport 36005 funray 36114 funline 36116 hilbert1.2 36129 lineintmo 36131 bj-bary1 37286 poimirlem13 37613 poimirlem14 37614 poimirlem17 37617 poimirlem27 37627 antisymressn 38421 disjdmqscossss 38781 prter2 38860 cdleme 40539 rediveud 42416 kelac2lem 43037 frege124d 43734 2ffzoeq 47311 sprsymrelf1lem 47475 paireqne 47495 usgrexmpl2trifr 48021 gpg5grlic 48078 pgnbgreunbgrlem2 48101 mof0ALT 48824 mofsn 48828 f1omoOLD 48878 oppcendc 49003 |
| Copyright terms: Public domain | W3C validator |