| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqtr3 | Structured version Visualization version GIF version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2742 | . 2 ⊢ (𝐵 = 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 = 𝐶)) | |
| 2 | 1 | biimparc 479 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 |
| This theorem is referenced by: neneor 3026 moeq 3681 euind 3698 reuind 3727 disjeq0 4422 ssprsseq 4792 mosneq 4809 prnebg 4823 prnesn 4827 prel12g 4831 3elpr2eq 4873 eusv1 5349 xpcan 6152 xpcan2 6153 funopg 6553 funopdmsn 7125 funsndifnop 7126 fvf1pr 7285 resf1extb 7913 wfr3g 8301 oawordeulem 8521 nnasmo 8630 en1eqsn 9226 ixpfi2 9308 frr3g 9716 isf32lem2 10314 fpwwe2lem12 10602 1re 11181 receu 11830 xrlttri 13106 injresinjlem 13755 cshwsexaOLD 14797 fsumparts 15779 odd2np1 16318 prmreclem2 16895 divsfval 17517 isprs 18264 psrn 18541 grpinveu 18913 symgextf1 19358 symgfixf1 19374 efgrelexlemb 19687 lspextmo 20970 evlseu 21997 tgcmp 23295 sqf11 27056 dchrisumlem2 27408 sltsolem1 27594 nocvxminlem 27696 divsmo 28094 axlowdimlem15 28890 axcontlem2 28899 wlksoneq1eq2 29599 spthonepeq 29689 uspgrn2crct 29745 wwlksnextinj 29836 frgrwopreglem5lem 30256 numclwwlk1lem2f1 30293 nsnlplig 30417 nsnlpligALT 30418 grpoinveu 30455 5oalem4 31593 rnbra 32043 xreceu 32849 bnj594 34909 bnj953 34936 fnsingle 35914 funimage 35923 funtransport 36026 funray 36135 funline 36137 hilbert1.2 36150 lineintmo 36152 bj-bary1 37307 poimirlem13 37634 poimirlem14 37635 poimirlem17 37638 poimirlem27 37648 antisymressn 38442 disjdmqscossss 38802 prter2 38881 cdleme 40561 rediveud 42438 kelac2lem 43060 frege124d 43757 2ffzoeq 47332 sprsymrelf1lem 47496 paireqne 47516 usgrexmpl2trifr 48032 gpg5grlic 48088 pgnbgreunbgrlem2 48111 mof0ALT 48832 mofsn 48836 f1omoOLD 48886 oppcendc 49011 |
| Copyright terms: Public domain | W3C validator |