![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqtr3 | Structured version Visualization version GIF version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
Ref | Expression |
---|---|
eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2746 | . 2 ⊢ (𝐵 = 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 = 𝐶)) | |
2 | 1 | biimparc 479 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 |
This theorem is referenced by: neneor 3039 moeq 3715 euind 3732 reuind 3761 disjeq0 4461 ssprsseq 4829 mosneq 4846 prnebg 4860 prnesn 4864 prel12g 4868 3elpr2eq 4910 eusv1 5396 xpcan 6197 xpcan2 6198 funopg 6601 funopdmsn 7169 funsndifnop 7170 fvf1pr 7326 wfr3g 8345 oawordeulem 8590 nnasmo 8699 en1eqsn 9305 ixpfi2 9387 frr3g 9793 isf32lem2 10391 fpwwe2lem12 10679 1re 11258 receu 11905 xrlttri 13177 injresinjlem 13822 cshwsexaOLD 14859 fsumparts 15838 odd2np1 16374 prmreclem2 16950 divsfval 17593 isprs 18353 psrn 18632 grpinveu 19004 symgextf1 19453 symgfixf1 19469 efgrelexlemb 19782 lspextmo 21072 evlseu 22124 tgcmp 23424 sqf11 27196 dchrisumlem2 27548 sltsolem1 27734 nocvxminlem 27836 divsmo 28224 axlowdimlem15 28985 axcontlem2 28994 wlksoneq1eq2 29696 spthonepeq 29784 uspgrn2crct 29837 wwlksnextinj 29928 frgrwopreglem5lem 30348 numclwwlk1lem2f1 30385 nsnlplig 30509 nsnlpligALT 30510 grpoinveu 30547 5oalem4 31685 rnbra 32135 xreceu 32888 bnj594 34904 bnj953 34931 fnsingle 35900 funimage 35909 funtransport 36012 funray 36121 funline 36123 hilbert1.2 36136 lineintmo 36138 bj-bary1 37294 poimirlem13 37619 poimirlem14 37620 poimirlem17 37623 poimirlem27 37633 antisymressn 38425 disjdmqscossss 38784 prter2 38862 cdleme 40542 kelac2lem 43052 frege124d 43750 2ffzoeq 47276 sprsymrelf1lem 47415 paireqne 47435 usgrexmpl2trifr 47931 gpg5grlic 47974 mof0ALT 48669 mofsn 48673 f1omo 48690 |
Copyright terms: Public domain | W3C validator |