Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqtr3 | Structured version Visualization version GIF version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
Ref | Expression |
---|---|
eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2750 | . 2 ⊢ (𝐵 = 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 = 𝐶)) | |
2 | 1 | biimparc 479 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 |
This theorem is referenced by: neneor 3043 moeq 3637 euind 3654 reuind 3683 disjeq0 4386 ssprsseq 4755 mosneq 4770 prnebg 4783 prnesn 4787 prel12g 4791 3elpr2eq 4835 eusv1 5309 xpcan 6068 xpcan2 6069 funopg 6452 funopdmsn 7004 funsndifnop 7005 mpofunOLD 7377 wfr3g 8109 oawordeulem 8347 ixpfi2 9047 frr3g 9445 isf32lem2 10041 fpwwe2lem12 10329 1re 10906 receu 11550 xrlttri 12802 injresinjlem 13435 cshwsexa 14465 fsumparts 15446 odd2np1 15978 prmreclem2 16546 divsfval 17175 isprs 17930 psrn 18208 grpinveu 18529 symgextf1 18944 symgfixf1 18960 efgrelexlemb 19271 lspextmo 20233 evlseu 21203 tgcmp 22460 sqf11 26193 dchrisumlem2 26543 axlowdimlem15 27227 axcontlem2 27236 wlksoneq1eq2 27934 spthonepeq 28021 uspgrn2crct 28074 wwlksnextinj 28165 frgrwopreglem5lem 28585 numclwwlk1lem2f1 28622 nsnlplig 28744 nsnlpligALT 28745 grpoinveu 28782 5oalem4 29920 rnbra 30370 xreceu 31098 bnj594 32792 bnj953 32819 nnasmo 33596 sltsolem1 33805 nocvxminlem 33899 fnsingle 34148 funimage 34157 funtransport 34260 funray 34369 funline 34371 hilbert1.2 34384 lineintmo 34386 bj-bary1 35410 poimirlem13 35717 poimirlem14 35718 poimirlem17 35721 poimirlem27 35731 prter2 36822 cdleme 38501 kelac2lem 40805 frege124d 41258 2ffzoeq 44708 sprsymrelf1lem 44831 paireqne 44851 mof0ALT 46055 mofsn 46059 f1omo 46076 |
Copyright terms: Public domain | W3C validator |