| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqtr3 | Structured version Visualization version GIF version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2741 | . 2 ⊢ (𝐵 = 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 = 𝐶)) | |
| 2 | 1 | biimparc 479 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: neneor 3025 moeq 3678 euind 3695 reuind 3724 disjeq0 4419 ssprsseq 4789 mosneq 4806 prnebg 4820 prnesn 4824 prel12g 4828 3elpr2eq 4870 eusv1 5346 xpcan 6149 xpcan2 6150 funopg 6550 funopdmsn 7122 funsndifnop 7123 fvf1pr 7282 resf1extb 7910 wfr3g 8298 oawordeulem 8518 nnasmo 8627 en1eqsn 9219 ixpfi2 9301 frr3g 9709 isf32lem2 10307 fpwwe2lem12 10595 1re 11174 receu 11823 xrlttri 13099 injresinjlem 13748 cshwsexaOLD 14790 fsumparts 15772 odd2np1 16311 prmreclem2 16888 divsfval 17510 isprs 18257 psrn 18534 grpinveu 18906 symgextf1 19351 symgfixf1 19367 efgrelexlemb 19680 lspextmo 20963 evlseu 21990 tgcmp 23288 sqf11 27049 dchrisumlem2 27401 sltsolem1 27587 nocvxminlem 27689 divsmo 28087 axlowdimlem15 28883 axcontlem2 28892 wlksoneq1eq2 29592 spthonepeq 29682 uspgrn2crct 29738 wwlksnextinj 29829 frgrwopreglem5lem 30249 numclwwlk1lem2f1 30286 nsnlplig 30410 nsnlpligALT 30411 grpoinveu 30448 5oalem4 31586 rnbra 32036 xreceu 32842 bnj594 34902 bnj953 34929 fnsingle 35907 funimage 35916 funtransport 36019 funray 36128 funline 36130 hilbert1.2 36143 lineintmo 36145 bj-bary1 37300 poimirlem13 37627 poimirlem14 37628 poimirlem17 37631 poimirlem27 37641 antisymressn 38435 disjdmqscossss 38795 prter2 38874 cdleme 40554 rediveud 42431 kelac2lem 43053 frege124d 43750 2ffzoeq 47328 sprsymrelf1lem 47492 paireqne 47512 usgrexmpl2trifr 48028 gpg5grlic 48084 pgnbgreunbgrlem2 48107 mof0ALT 48828 mofsn 48832 f1omoOLD 48882 oppcendc 49007 |
| Copyright terms: Public domain | W3C validator |