| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqtr2 | Structured version Visualization version GIF version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqtr2 | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2735 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | 1 | biimpa 476 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 |
| This theorem is referenced by: eqvincg 3598 reusv3i 5337 moop2 5437 relopabi 5757 relop 5785 f0rn0 6703 fliftfun 7241 soseq 8084 addlsub 11528 wrd2ind 14625 fsum2dlem 15672 fprodser 15851 0dvds 16182 cncongr1 16573 4sqlem12 16863 cshwshashlem1 17002 catideu 17576 pj1eu 19603 lspsneu 21055 1marepvmarrepid 22485 mdetunilem6 22527 qtopeu 23626 qtophmeo 23727 dscmet 24482 isosctrlem2 26751 ppiub 27137 sltsolem1 27609 nolt02o 27629 nogt01o 27630 axcgrtr 28888 axeuclid 28936 axcontlem2 28938 uhgr2edg 29181 usgredgreu 29191 uspgredg2vtxeu 29193 wlkon2n0 29638 spthonepeq 29725 usgr2wlkneq 29729 2pthon3v 29916 umgr2adedgspth 29921 clwwlknondisj 30083 frgr2wwlkeqm 30303 2wspmdisj 30309 ajmoi 30830 chocunii 31273 3oalem2 31635 adjmo 31804 cdjreui 32404 eqtrb 32445 probun 34424 bnj551 34746 fineqvnttrclselem1 35133 satfv0fun 35407 satffunlem 35437 satffunlem1lem1 35438 satffunlem2lem1 35440 r1peuqusdeg1 35679 btwnswapid 36051 bj-snsetex 36997 bj-bary1lem1 37345 poimirlem4 37664 exidu1 37896 rngoideu 37943 mapdpglem31 41742 grpods 42227 remul01 42440 frege55b 43930 frege55c 43951 cncfiooicclem1 45931 euoreqb 47140 isuspgrim0lem 47924 aacllem 49833 |
| Copyright terms: Public domain | W3C validator |