| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqtr2 | Structured version Visualization version GIF version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqtr2 | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2737 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | 1 | biimpa 476 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 |
| This theorem is referenced by: eqvincg 3599 reusv3i 5346 moop2 5447 relopabi 5768 relop 5796 f0rn0 6716 fliftfun 7255 soseq 8098 addlsub 11544 wrd2ind 14637 fsum2dlem 15684 fprodser 15863 0dvds 16194 cncongr1 16585 4sqlem12 16875 cshwshashlem1 17014 catideu 17589 pj1eu 19616 lspsneu 21069 1marepvmarrepid 22510 mdetunilem6 22552 qtopeu 23651 qtophmeo 23752 dscmet 24507 isosctrlem2 26776 ppiub 27162 sltsolem1 27634 nolt02o 27654 nogt01o 27655 axcgrtr 28914 axeuclid 28962 axcontlem2 28964 uhgr2edg 29207 usgredgreu 29217 uspgredg2vtxeu 29219 wlkon2n0 29664 spthonepeq 29751 usgr2wlkneq 29755 2pthon3v 29942 umgr2adedgspth 29947 clwwlknondisj 30112 frgr2wwlkeqm 30332 2wspmdisj 30338 ajmoi 30859 chocunii 31302 3oalem2 31664 adjmo 31833 cdjreui 32433 eqtrb 32474 probun 34504 bnj551 34826 fineqvnttrclselem1 35213 satfv0fun 35487 satffunlem 35517 satffunlem1lem1 35518 satffunlem2lem1 35520 r1peuqusdeg1 35759 btwnswapid 36133 bj-snsetex 37080 bj-bary1lem1 37428 poimirlem4 37737 exidu1 37969 rngoideu 38016 mapdpglem31 41875 grpods 42360 remul01 42577 frege55b 44054 frege55c 44075 cncfiooicclem1 46053 euoreqb 47271 isuspgrim0lem 48055 aacllem 49962 |
| Copyright terms: Public domain | W3C validator |