| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqtr2 | Structured version Visualization version GIF version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqtr2 | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2734 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | 1 | biimpa 476 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 |
| This theorem is referenced by: eqvincg 3617 reusv3i 5362 moop2 5465 relopabi 5788 relop 5817 f0rn0 6748 fliftfun 7290 soseq 8141 addlsub 11601 wrd2ind 14695 fsum2dlem 15743 fprodser 15922 0dvds 16253 cncongr1 16644 4sqlem12 16934 cshwshashlem1 17073 catideu 17643 pj1eu 19633 lspsneu 21040 1marepvmarrepid 22469 mdetunilem6 22511 qtopeu 23610 qtophmeo 23711 dscmet 24467 isosctrlem2 26736 ppiub 27122 sltsolem1 27594 nolt02o 27614 nogt01o 27615 axcgrtr 28849 axeuclid 28897 axcontlem2 28899 uhgr2edg 29142 usgredgreu 29152 uspgredg2vtxeu 29154 wlkon2n0 29601 spthonepeq 29689 usgr2wlkneq 29693 2pthon3v 29880 umgr2adedgspth 29885 clwwlknondisj 30047 frgr2wwlkeqm 30267 2wspmdisj 30273 ajmoi 30794 chocunii 31237 3oalem2 31599 adjmo 31768 cdjreui 32368 eqtrb 32410 probun 34417 bnj551 34739 satfv0fun 35365 satffunlem 35395 satffunlem1lem1 35396 satffunlem2lem1 35398 r1peuqusdeg1 35637 btwnswapid 36012 bj-snsetex 36958 bj-bary1lem1 37306 poimirlem4 37625 exidu1 37857 rngoideu 37904 mapdpglem31 41704 grpods 42189 remul01 42402 frege55b 43893 frege55c 43914 cncfiooicclem1 45898 euoreqb 47114 isuspgrim0lem 47897 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |