![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqtr2 | Structured version Visualization version GIF version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
Ref | Expression |
---|---|
eqtr2 | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2736 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | 1 | biimpa 477 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 |
This theorem is referenced by: eqvincg 3635 reusv3i 5401 moop2 5501 relopabi 5820 relop 5848 f0rn0 6773 fliftfun 7305 soseq 8141 addlsub 11626 wrd2ind 14669 fsum2dlem 15712 fprodser 15889 0dvds 16216 cncongr1 16600 4sqlem12 16885 cshwshashlem1 17025 catideu 17615 pj1eu 19558 lspsneu 20728 1marepvmarrepid 22068 mdetunilem6 22110 qtopeu 23211 qtophmeo 23312 dscmet 24072 isosctrlem2 26313 ppiub 26696 sltsolem1 27167 nolt02o 27187 nogt01o 27188 axcgrtr 28162 axeuclid 28210 axcontlem2 28212 uhgr2edg 28454 usgredgreu 28464 uspgredg2vtxeu 28466 wlkon2n0 28912 spthonepeq 28998 usgr2wlkneq 29002 2pthon3v 29186 umgr2adedgspth 29191 clwwlknondisj 29353 frgr2wwlkeqm 29573 2wspmdisj 29579 ajmoi 30098 chocunii 30541 3oalem2 30903 adjmo 31072 cdjreui 31672 eqtrb 31701 probun 33406 bnj551 33741 satfv0fun 34350 satffunlem 34380 satffunlem1lem1 34381 satffunlem2lem1 34383 btwnswapid 34977 bj-snsetex 35832 bj-bary1lem1 36180 poimirlem4 36480 exidu1 36712 rngoideu 36759 mapdpglem31 40562 remul01 41276 frege55b 42633 frege55c 42654 cncfiooicclem1 44595 euoreqb 45803 aacllem 47801 |
Copyright terms: Public domain | W3C validator |