| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqtr2 | Structured version Visualization version GIF version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqtr2 | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | 1 | biimpa 476 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: eqvincg 3605 reusv3i 5346 moop2 5449 relopabi 5769 relop 5797 f0rn0 6713 fliftfun 7253 soseq 8099 addlsub 11555 wrd2ind 14648 fsum2dlem 15696 fprodser 15875 0dvds 16206 cncongr1 16597 4sqlem12 16887 cshwshashlem1 17026 catideu 17600 pj1eu 19594 lspsneu 21049 1marepvmarrepid 22479 mdetunilem6 22521 qtopeu 23620 qtophmeo 23721 dscmet 24477 isosctrlem2 26746 ppiub 27132 sltsolem1 27604 nolt02o 27624 nogt01o 27625 axcgrtr 28879 axeuclid 28927 axcontlem2 28929 uhgr2edg 29172 usgredgreu 29182 uspgredg2vtxeu 29184 wlkon2n0 29629 spthonepeq 29716 usgr2wlkneq 29720 2pthon3v 29907 umgr2adedgspth 29912 clwwlknondisj 30074 frgr2wwlkeqm 30294 2wspmdisj 30300 ajmoi 30821 chocunii 31264 3oalem2 31626 adjmo 31795 cdjreui 32395 eqtrb 32437 probun 34406 bnj551 34728 satfv0fun 35363 satffunlem 35393 satffunlem1lem1 35394 satffunlem2lem1 35396 r1peuqusdeg1 35635 btwnswapid 36010 bj-snsetex 36956 bj-bary1lem1 37304 poimirlem4 37623 exidu1 37855 rngoideu 37902 mapdpglem31 41702 grpods 42187 remul01 42400 frege55b 43890 frege55c 43911 cncfiooicclem1 45894 euoreqb 47113 isuspgrim0lem 47897 aacllem 49806 |
| Copyright terms: Public domain | W3C validator |