Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqtr2 | Structured version Visualization version GIF version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
Ref | Expression |
---|---|
eqtr2 | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2742 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | 1 | biimpa 476 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 |
This theorem is referenced by: eqvincg 3570 reusv3i 5322 moop2 5410 relopabi 5721 relop 5748 f0rn0 6643 fliftfun 7163 addlsub 11321 wrd2ind 14364 fsum2dlem 15410 fprodser 15587 0dvds 15914 cncongr1 16300 4sqlem12 16585 cshwshashlem1 16725 catideu 17301 pj1eu 19217 lspsneu 20300 1marepvmarrepid 21632 mdetunilem6 21674 qtopeu 22775 qtophmeo 22876 dscmet 23634 isosctrlem2 25874 ppiub 26257 axcgrtr 27186 axeuclid 27234 axcontlem2 27236 uhgr2edg 27478 usgredgreu 27488 uspgredg2vtxeu 27490 wlkon2n0 27936 spthonepeq 28021 usgr2wlkneq 28025 2pthon3v 28209 umgr2adedgspth 28214 clwwlknondisj 28376 frgr2wwlkeqm 28596 2wspmdisj 28602 ajmoi 29121 chocunii 29564 3oalem2 29926 adjmo 30095 cdjreui 30695 eqtrb 30724 probun 32286 bnj551 32622 satfv0fun 33233 satffunlem 33263 satffunlem1lem1 33264 satffunlem2lem1 33266 soseq 33730 sltsolem1 33805 nolt02o 33825 nogt01o 33826 btwnswapid 34246 bj-snsetex 35080 bj-bary1lem1 35409 poimirlem4 35708 exidu1 35941 rngoideu 35988 mapdpglem31 39644 remul01 40311 frege55b 41394 frege55c 41415 cncfiooicclem1 43324 euoreqb 44488 aacllem 46391 |
Copyright terms: Public domain | W3C validator |