![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqtr2 | Structured version Visualization version GIF version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
Ref | Expression |
---|---|
eqtr2 | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2744 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | 1 | biimpa 476 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 |
This theorem is referenced by: eqvincg 3661 reusv3i 5422 moop2 5521 relopabi 5846 relop 5875 f0rn0 6806 fliftfun 7348 soseq 8200 addlsub 11706 wrd2ind 14771 fsum2dlem 15818 fprodser 15997 0dvds 16325 cncongr1 16714 4sqlem12 17003 cshwshashlem1 17143 catideu 17733 pj1eu 19738 lspsneu 21148 1marepvmarrepid 22602 mdetunilem6 22644 qtopeu 23745 qtophmeo 23846 dscmet 24606 isosctrlem2 26880 ppiub 27266 sltsolem1 27738 nolt02o 27758 nogt01o 27759 axcgrtr 28948 axeuclid 28996 axcontlem2 28998 uhgr2edg 29243 usgredgreu 29253 uspgredg2vtxeu 29255 wlkon2n0 29702 spthonepeq 29788 usgr2wlkneq 29792 2pthon3v 29976 umgr2adedgspth 29981 clwwlknondisj 30143 frgr2wwlkeqm 30363 2wspmdisj 30369 ajmoi 30890 chocunii 31333 3oalem2 31695 adjmo 31864 cdjreui 32464 eqtrb 32502 probun 34384 bnj551 34718 satfv0fun 35339 satffunlem 35369 satffunlem1lem1 35370 satffunlem2lem1 35372 r1peuqusdeg1 35611 btwnswapid 35981 bj-snsetex 36929 bj-bary1lem1 37277 poimirlem4 37584 exidu1 37816 rngoideu 37863 mapdpglem31 41660 grpods 42151 remul01 42383 frege55b 43859 frege55c 43880 cncfiooicclem1 45814 euoreqb 47024 isuspgrim0lem 47755 aacllem 48895 |
Copyright terms: Public domain | W3C validator |