![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqtr2 | Structured version Visualization version GIF version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
Ref | Expression |
---|---|
eqtr2 | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2739 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | 1 | biimpa 476 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 |
This theorem is referenced by: eqvincg 3648 reusv3i 5410 moop2 5512 relopabi 5835 relop 5864 f0rn0 6794 fliftfun 7332 soseq 8183 addlsub 11677 wrd2ind 14758 fsum2dlem 15803 fprodser 15982 0dvds 16311 cncongr1 16701 4sqlem12 16990 cshwshashlem1 17130 catideu 17720 pj1eu 19729 lspsneu 21143 1marepvmarrepid 22597 mdetunilem6 22639 qtopeu 23740 qtophmeo 23841 dscmet 24601 isosctrlem2 26877 ppiub 27263 sltsolem1 27735 nolt02o 27755 nogt01o 27756 axcgrtr 28945 axeuclid 28993 axcontlem2 28995 uhgr2edg 29240 usgredgreu 29250 uspgredg2vtxeu 29252 wlkon2n0 29699 spthonepeq 29785 usgr2wlkneq 29789 2pthon3v 29973 umgr2adedgspth 29978 clwwlknondisj 30140 frgr2wwlkeqm 30360 2wspmdisj 30366 ajmoi 30887 chocunii 31330 3oalem2 31692 adjmo 31861 cdjreui 32461 eqtrb 32502 probun 34401 bnj551 34735 satfv0fun 35356 satffunlem 35386 satffunlem1lem1 35387 satffunlem2lem1 35389 r1peuqusdeg1 35628 btwnswapid 35999 bj-snsetex 36946 bj-bary1lem1 37294 poimirlem4 37611 exidu1 37843 rngoideu 37890 mapdpglem31 41686 grpods 42176 remul01 42414 frege55b 43887 frege55c 43908 cncfiooicclem1 45849 euoreqb 47059 isuspgrim0lem 47809 aacllem 49032 |
Copyright terms: Public domain | W3C validator |