| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqtr2 | Structured version Visualization version GIF version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqtr2 | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | 1 | biimpa 476 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: eqvincg 3614 reusv3i 5359 moop2 5462 relopabi 5785 relop 5814 f0rn0 6745 fliftfun 7287 soseq 8138 addlsub 11594 wrd2ind 14688 fsum2dlem 15736 fprodser 15915 0dvds 16246 cncongr1 16637 4sqlem12 16927 cshwshashlem1 17066 catideu 17636 pj1eu 19626 lspsneu 21033 1marepvmarrepid 22462 mdetunilem6 22504 qtopeu 23603 qtophmeo 23704 dscmet 24460 isosctrlem2 26729 ppiub 27115 sltsolem1 27587 nolt02o 27607 nogt01o 27608 axcgrtr 28842 axeuclid 28890 axcontlem2 28892 uhgr2edg 29135 usgredgreu 29145 uspgredg2vtxeu 29147 wlkon2n0 29594 spthonepeq 29682 usgr2wlkneq 29686 2pthon3v 29873 umgr2adedgspth 29878 clwwlknondisj 30040 frgr2wwlkeqm 30260 2wspmdisj 30266 ajmoi 30787 chocunii 31230 3oalem2 31592 adjmo 31761 cdjreui 32361 eqtrb 32403 probun 34410 bnj551 34732 satfv0fun 35358 satffunlem 35388 satffunlem1lem1 35389 satffunlem2lem1 35391 r1peuqusdeg1 35630 btwnswapid 36005 bj-snsetex 36951 bj-bary1lem1 37299 poimirlem4 37618 exidu1 37850 rngoideu 37897 mapdpglem31 41697 grpods 42182 remul01 42395 frege55b 43886 frege55c 43907 cncfiooicclem1 45891 euoreqb 47110 isuspgrim0lem 47893 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |