![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqtr2 | Structured version Visualization version GIF version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
Ref | Expression |
---|---|
eqtr2 | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2736 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | 1 | biimpa 477 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 |
This theorem is referenced by: eqvincg 3636 reusv3i 5402 moop2 5502 relopabi 5822 relop 5850 f0rn0 6776 fliftfun 7311 soseq 8147 addlsub 11634 wrd2ind 14677 fsum2dlem 15720 fprodser 15897 0dvds 16224 cncongr1 16608 4sqlem12 16893 cshwshashlem1 17033 catideu 17623 pj1eu 19605 lspsneu 20881 1marepvmarrepid 22297 mdetunilem6 22339 qtopeu 23440 qtophmeo 23541 dscmet 24301 isosctrlem2 26548 ppiub 26931 sltsolem1 27402 nolt02o 27422 nogt01o 27423 axcgrtr 28428 axeuclid 28476 axcontlem2 28478 uhgr2edg 28720 usgredgreu 28730 uspgredg2vtxeu 28732 wlkon2n0 29178 spthonepeq 29264 usgr2wlkneq 29268 2pthon3v 29452 umgr2adedgspth 29457 clwwlknondisj 29619 frgr2wwlkeqm 29839 2wspmdisj 29845 ajmoi 30366 chocunii 30809 3oalem2 31171 adjmo 31340 cdjreui 31940 eqtrb 31969 probun 33704 bnj551 34039 satfv0fun 34648 satffunlem 34678 satffunlem1lem1 34679 satffunlem2lem1 34681 btwnswapid 35281 bj-snsetex 36147 bj-bary1lem1 36495 poimirlem4 36795 exidu1 37027 rngoideu 37074 mapdpglem31 40877 remul01 41582 frege55b 42950 frege55c 42971 cncfiooicclem1 44908 euoreqb 46116 aacllem 47936 |
Copyright terms: Public domain | W3C validator |