| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqtr2 | Structured version Visualization version GIF version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqtr2 | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | 1 | biimpa 476 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: eqvincg 3611 reusv3i 5354 moop2 5457 relopabi 5776 relop 5804 f0rn0 6727 fliftfun 7269 soseq 8115 addlsub 11570 wrd2ind 14664 fsum2dlem 15712 fprodser 15891 0dvds 16222 cncongr1 16613 4sqlem12 16903 cshwshashlem1 17042 catideu 17612 pj1eu 19602 lspsneu 21009 1marepvmarrepid 22438 mdetunilem6 22480 qtopeu 23579 qtophmeo 23680 dscmet 24436 isosctrlem2 26705 ppiub 27091 sltsolem1 27563 nolt02o 27583 nogt01o 27584 axcgrtr 28818 axeuclid 28866 axcontlem2 28868 uhgr2edg 29111 usgredgreu 29121 uspgredg2vtxeu 29123 wlkon2n0 29568 spthonepeq 29655 usgr2wlkneq 29659 2pthon3v 29846 umgr2adedgspth 29851 clwwlknondisj 30013 frgr2wwlkeqm 30233 2wspmdisj 30239 ajmoi 30760 chocunii 31203 3oalem2 31565 adjmo 31734 cdjreui 32334 eqtrb 32376 probun 34383 bnj551 34705 satfv0fun 35331 satffunlem 35361 satffunlem1lem1 35362 satffunlem2lem1 35364 r1peuqusdeg1 35603 btwnswapid 35978 bj-snsetex 36924 bj-bary1lem1 37272 poimirlem4 37591 exidu1 37823 rngoideu 37870 mapdpglem31 41670 grpods 42155 remul01 42368 frege55b 43859 frege55c 43880 cncfiooicclem1 45864 euoreqb 47083 isuspgrim0lem 47866 aacllem 49763 |
| Copyright terms: Public domain | W3C validator |