Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqtrb | Structured version Visualization version GIF version |
Description: A transposition of equality. (Contributed by Thierry Arnoux, 20-Aug-2023.) |
Ref | Expression |
---|---|
eqtrb | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐵) | |
2 | eqtr2 2762 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) | |
3 | 1, 2 | jca 512 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
4 | simpl 483 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) | |
5 | eqtr 2761 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) | |
6 | 4, 5 | jca 512 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → (𝐴 = 𝐵 ∧ 𝐴 = 𝐶)) |
7 | 3, 6 | impbii 208 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |