Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqtrb Structured version   Visualization version   GIF version

Theorem eqtrb 30724
Description: A transposition of equality. (Contributed by Thierry Arnoux, 20-Aug-2023.)
Assertion
Ref Expression
eqtrb ((𝐴 = 𝐵𝐴 = 𝐶) ↔ (𝐴 = 𝐵𝐵 = 𝐶))

Proof of Theorem eqtrb
StepHypRef Expression
1 simpl 482 . . 3 ((𝐴 = 𝐵𝐴 = 𝐶) → 𝐴 = 𝐵)
2 eqtr2 2762 . . 3 ((𝐴 = 𝐵𝐴 = 𝐶) → 𝐵 = 𝐶)
31, 2jca 511 . 2 ((𝐴 = 𝐵𝐴 = 𝐶) → (𝐴 = 𝐵𝐵 = 𝐶))
4 simpl 482 . . 3 ((𝐴 = 𝐵𝐵 = 𝐶) → 𝐴 = 𝐵)
5 eqtr 2761 . . 3 ((𝐴 = 𝐵𝐵 = 𝐶) → 𝐴 = 𝐶)
64, 5jca 511 . 2 ((𝐴 = 𝐵𝐵 = 𝐶) → (𝐴 = 𝐵𝐴 = 𝐶))
73, 6impbii 208 1 ((𝐴 = 𝐵𝐴 = 𝐶) ↔ (𝐴 = 𝐵𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator