Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > r19.29ffa | Structured version Visualization version GIF version |
Description: A commonly used pattern based on r19.29 3183, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) |
Ref | Expression |
---|---|
r19.29ffa.3 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
r19.29ffa | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29ffa.3 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 412 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒)) |
3 | 2 | ralrimiva 3107 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 (𝜓 → 𝜒)) |
4 | 3 | ralrimiva 3107 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝜒)) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝜒)) |
6 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
7 | 5, 6 | r19.29d2r 3261 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ((𝜓 → 𝜒) ∧ 𝜓)) |
8 | pm3.35 799 | . . . . 5 ⊢ ((𝜓 ∧ (𝜓 → 𝜒)) → 𝜒) | |
9 | 8 | ancoms 458 | . . . 4 ⊢ (((𝜓 → 𝜒) ∧ 𝜓) → 𝜒) |
10 | 9 | rexlimivw 3210 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ((𝜓 → 𝜒) ∧ 𝜓) → 𝜒) |
11 | 10 | rexlimivw 3210 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ((𝜓 → 𝜒) ∧ 𝜓) → 𝜒) |
12 | 7, 11 | syl 17 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-ral 3068 df-rex 3069 |
This theorem is referenced by: opreu2reuALT 30726 reprsuc 32495 |
Copyright terms: Public domain | W3C validator |