Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r19.29ffa Structured version   Visualization version   GIF version

Theorem r19.29ffa 30333
 Description: A commonly used pattern based on r19.29 3182, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.)
Hypothesis
Ref Expression
r19.29ffa.3 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)
Assertion
Ref Expression
r19.29ffa ((𝜑 ∧ ∃𝑥𝐴𝑦𝐵 𝜓) → 𝜒)
Distinct variable groups:   𝑦,𝐴   𝜑,𝑥,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r19.29ffa
StepHypRef Expression
1 r19.29ffa.3 . . . . . . 7 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)
21ex 417 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → (𝜓𝜒))
32ralrimiva 3114 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑦𝐵 (𝜓𝜒))
43ralrimiva 3114 . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐵 (𝜓𝜒))
54adantr 485 . . 3 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐵 𝜓) → ∀𝑥𝐴𝑦𝐵 (𝜓𝜒))
6 simpr 489 . . 3 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐵 𝜓) → ∃𝑥𝐴𝑦𝐵 𝜓)
75, 6r19.29d2r 3257 . 2 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐵 𝜓) → ∃𝑥𝐴𝑦𝐵 ((𝜓𝜒) ∧ 𝜓))
8 pm3.35 803 . . . . 5 ((𝜓 ∧ (𝜓𝜒)) → 𝜒)
98ancoms 463 . . . 4 (((𝜓𝜒) ∧ 𝜓) → 𝜒)
109rexlimivw 3207 . . 3 (∃𝑦𝐵 ((𝜓𝜒) ∧ 𝜓) → 𝜒)
1110rexlimivw 3207 . 2 (∃𝑥𝐴𝑦𝐵 ((𝜓𝜒) ∧ 𝜓) → 𝜒)
127, 11syl 17 1 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐵 𝜓) → 𝜒)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   ∈ wcel 2112  ∀wral 3071  ∃wrex 3072 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912 This theorem depends on definitions:  df-bi 210  df-an 401  df-ex 1783  df-ral 3076  df-rex 3077 This theorem is referenced by:  opreu2reuALT  30336  reprsuc  32104
 Copyright terms: Public domain W3C validator