| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > r19.29ffa | Structured version Visualization version GIF version | ||
| Description: A commonly used pattern based on r19.29 3114, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) |
| Ref | Expression |
|---|---|
| r19.29ffa.3 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| r19.29ffa | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29ffa.3 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒)) |
| 3 | 2 | ralrimiva 3146 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 (𝜓 → 𝜒)) |
| 4 | 3 | ralrimiva 3146 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝜒)) |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝜒)) |
| 6 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
| 7 | 5, 6 | r19.29d2r 3140 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ((𝜓 → 𝜒) ∧ 𝜓)) |
| 8 | pm3.35 803 | . . . . 5 ⊢ ((𝜓 ∧ (𝜓 → 𝜒)) → 𝜒) | |
| 9 | 8 | ancoms 458 | . . . 4 ⊢ (((𝜓 → 𝜒) ∧ 𝜓) → 𝜒) |
| 10 | 9 | rexlimivw 3151 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ((𝜓 → 𝜒) ∧ 𝜓) → 𝜒) |
| 11 | 10 | rexlimivw 3151 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ((𝜓 → 𝜒) ∧ 𝜓) → 𝜒) |
| 12 | 7, 11 | syl 17 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3062 df-rex 3071 |
| This theorem is referenced by: opreu2reuALT 32496 gsumwun 33068 elrspunsn 33457 ply1dg3rt0irred 33607 reprsuc 34630 |
| Copyright terms: Public domain | W3C validator |