| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqelbid | Structured version Visualization version GIF version | ||
| Description: A variable elimination law for equality within a given set 𝐴. See equvel 2461. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
| Ref | Expression |
|---|---|
| eqelbid.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| eqelbid.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| eqelbid | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 ↔ 𝑥 = 𝐶) ↔ 𝐵 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2741 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 = 𝐵 ↔ 𝐵 = 𝐵)) | |
| 2 | eqeq1 2741 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 3 | 1, 2 | bibi12d 345 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝑥 = 𝐵 ↔ 𝑥 = 𝐶) ↔ (𝐵 = 𝐵 ↔ 𝐵 = 𝐶))) |
| 4 | eqid 2737 | . . . . . 6 ⊢ 𝐵 = 𝐵 | |
| 5 | 4 | tbt 369 | . . . . 5 ⊢ (𝐵 = 𝐶 ↔ (𝐵 = 𝐶 ↔ 𝐵 = 𝐵)) |
| 6 | bicom 222 | . . . . 5 ⊢ ((𝐵 = 𝐶 ↔ 𝐵 = 𝐵) ↔ (𝐵 = 𝐵 ↔ 𝐵 = 𝐶)) | |
| 7 | 5, 6 | bitri 275 | . . . 4 ⊢ (𝐵 = 𝐶 ↔ (𝐵 = 𝐵 ↔ 𝐵 = 𝐶)) |
| 8 | 3, 7 | bitr4di 289 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝑥 = 𝐵 ↔ 𝑥 = 𝐶) ↔ 𝐵 = 𝐶)) |
| 9 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 ↔ 𝑥 = 𝐶)) → ∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 ↔ 𝑥 = 𝐶)) | |
| 10 | eqelbid.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 ↔ 𝑥 = 𝐶)) → 𝐵 ∈ 𝐴) |
| 12 | 8, 9, 11 | rspcdva 3623 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 ↔ 𝑥 = 𝐶)) → 𝐵 = 𝐶) |
| 13 | simplr 769 | . . . 4 ⊢ (((𝜑 ∧ 𝐵 = 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 14 | 13 | eqeq2d 2748 | . . 3 ⊢ (((𝜑 ∧ 𝐵 = 𝐶) ∧ 𝑥 ∈ 𝐴) → (𝑥 = 𝐵 ↔ 𝑥 = 𝐶)) |
| 15 | 14 | ralrimiva 3146 | . 2 ⊢ ((𝜑 ∧ 𝐵 = 𝐶) → ∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 ↔ 𝑥 = 𝐶)) |
| 16 | 12, 15 | impbida 801 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 ↔ 𝑥 = 𝐶) ↔ 𝐵 = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 |
| This theorem is referenced by: ply1moneq 33611 |
| Copyright terms: Public domain | W3C validator |