Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqelbid Structured version   Visualization version   GIF version

Theorem eqelbid 32503
Description: A variable elimination law for equality within a given set 𝐴. See equvel 2464. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Hypotheses
Ref Expression
eqelbid.1 (𝜑𝐵𝐴)
eqelbid.2 (𝜑𝐶𝐴)
Assertion
Ref Expression
eqelbid (𝜑 → (∀𝑥𝐴 (𝑥 = 𝐵𝑥 = 𝐶) ↔ 𝐵 = 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem eqelbid
StepHypRef Expression
1 eqeq1 2744 . . . . 5 (𝑥 = 𝐵 → (𝑥 = 𝐵𝐵 = 𝐵))
2 eqeq1 2744 . . . . 5 (𝑥 = 𝐵 → (𝑥 = 𝐶𝐵 = 𝐶))
31, 2bibi12d 345 . . . 4 (𝑥 = 𝐵 → ((𝑥 = 𝐵𝑥 = 𝐶) ↔ (𝐵 = 𝐵𝐵 = 𝐶)))
4 eqid 2740 . . . . . 6 𝐵 = 𝐵
54tbt 369 . . . . 5 (𝐵 = 𝐶 ↔ (𝐵 = 𝐶𝐵 = 𝐵))
6 bicom 222 . . . . 5 ((𝐵 = 𝐶𝐵 = 𝐵) ↔ (𝐵 = 𝐵𝐵 = 𝐶))
75, 6bitri 275 . . . 4 (𝐵 = 𝐶 ↔ (𝐵 = 𝐵𝐵 = 𝐶))
83, 7bitr4di 289 . . 3 (𝑥 = 𝐵 → ((𝑥 = 𝐵𝑥 = 𝐶) ↔ 𝐵 = 𝐶))
9 simpr 484 . . 3 ((𝜑 ∧ ∀𝑥𝐴 (𝑥 = 𝐵𝑥 = 𝐶)) → ∀𝑥𝐴 (𝑥 = 𝐵𝑥 = 𝐶))
10 eqelbid.1 . . . 4 (𝜑𝐵𝐴)
1110adantr 480 . . 3 ((𝜑 ∧ ∀𝑥𝐴 (𝑥 = 𝐵𝑥 = 𝐶)) → 𝐵𝐴)
128, 9, 11rspcdva 3636 . 2 ((𝜑 ∧ ∀𝑥𝐴 (𝑥 = 𝐵𝑥 = 𝐶)) → 𝐵 = 𝐶)
13 simplr 768 . . . 4 (((𝜑𝐵 = 𝐶) ∧ 𝑥𝐴) → 𝐵 = 𝐶)
1413eqeq2d 2751 . . 3 (((𝜑𝐵 = 𝐶) ∧ 𝑥𝐴) → (𝑥 = 𝐵𝑥 = 𝐶))
1514ralrimiva 3152 . 2 ((𝜑𝐵 = 𝐶) → ∀𝑥𝐴 (𝑥 = 𝐵𝑥 = 𝐶))
1612, 15impbida 800 1 (𝜑 → (∀𝑥𝐴 (𝑥 = 𝐵𝑥 = 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068
This theorem is referenced by:  ply1moneq  33576
  Copyright terms: Public domain W3C validator