Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equcomi1 Structured version   Visualization version   GIF version

Theorem equcomi1 38923
Description: Proof of equcomi 2017 from equid1 38922, avoiding use of ax-5 1910 (the only use of ax-5 1910 is via ax7 2016, so using ax-7 2008 instead would remove dependency on ax-5 1910). (Contributed by BJ, 8-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
equcomi1 (𝑥 = 𝑦𝑦 = 𝑥)

Proof of Theorem equcomi1
StepHypRef Expression
1 equid1 38922 . 2 𝑥 = 𝑥
2 ax7 2016 . 2 (𝑥 = 𝑦 → (𝑥 = 𝑥𝑦 = 𝑥))
31, 2mpi 20 1 (𝑥 = 𝑦𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-c5 38906  ax-c4 38907  ax-c7 38908  ax-c10 38909  ax-c9 38913
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780
This theorem is referenced by:  aecom-o  38924
  Copyright terms: Public domain W3C validator