MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vn0 Structured version   Visualization version   GIF version

Theorem vn0 4292
Description: The universal class is not equal to the empty set. (Contributed by NM, 11-Sep-2008.) Avoid ax-8 2113, df-clel 2806. (Revised by GG, 6-Sep-2024.)
Assertion
Ref Expression
vn0 V ≠ ∅

Proof of Theorem vn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vextru 2716 . . . . . . 7 𝑦 ∈ {𝑥 ∣ ⊤}
2 fal 1555 . . . . . . 7 ¬ ⊥
31, 22th 264 . . . . . 6 (𝑦 ∈ {𝑥 ∣ ⊤} ↔ ¬ ⊥)
4 xor3 382 . . . . . 6 (¬ (𝑦 ∈ {𝑥 ∣ ⊤} ↔ ⊥) ↔ (𝑦 ∈ {𝑥 ∣ ⊤} ↔ ¬ ⊥))
53, 4mpbir 231 . . . . 5 ¬ (𝑦 ∈ {𝑥 ∣ ⊤} ↔ ⊥)
65exgen 1975 . . . 4 𝑦 ¬ (𝑦 ∈ {𝑥 ∣ ⊤} ↔ ⊥)
7 exnal 1828 . . . 4 (∃𝑦 ¬ (𝑦 ∈ {𝑥 ∣ ⊤} ↔ ⊥) ↔ ¬ ∀𝑦(𝑦 ∈ {𝑥 ∣ ⊤} ↔ ⊥))
86, 7mpbi 230 . . 3 ¬ ∀𝑦(𝑦 ∈ {𝑥 ∣ ⊤} ↔ ⊥)
9 dfv2 3439 . . . . 5 V = {𝑥 ∣ ⊤}
10 dfnul4 4282 . . . . 5 ∅ = {𝑥 ∣ ⊥}
119, 10eqeq12i 2749 . . . 4 (V = ∅ ↔ {𝑥 ∣ ⊤} = {𝑥 ∣ ⊥})
12 biidd 262 . . . . 5 (𝑥 = 𝑦 → (⊥ ↔ ⊥))
1312eqabbw 2804 . . . 4 ({𝑥 ∣ ⊤} = {𝑥 ∣ ⊥} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ ⊤} ↔ ⊥))
1411, 13bitri 275 . . 3 (V = ∅ ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ ⊤} ↔ ⊥))
158, 14mtbir 323 . 2 ¬ V = ∅
1615neir 2931 1 V ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1539   = wceq 1541  wtru 1542  wfal 1553  wex 1780  wcel 2111  {cab 2709  wne 2928  Vcvv 3436  c0 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-ne 2929  df-v 3438  df-dif 3900  df-nul 4281
This theorem is referenced by:  uniintsn  4933  relrelss  6220  imasaddfnlem  17432  imasvscafn  17441  cmpfi  23323  fclscmp  23945  zarcmplem  33894  compne  44543
  Copyright terms: Public domain W3C validator