Step | Hyp | Ref
| Expression |
1 | | fal 1553 |
. . . . . . 7
⊢ ¬
⊥ |
2 | | pm5.501 366 |
. . . . . . . 8
⊢ (⊤
→ (⊥ ↔ (⊤ ↔ ⊥))) |
3 | 2 | mptru 1546 |
. . . . . . 7
⊢ (⊥
↔ (⊤ ↔ ⊥)) |
4 | 1, 3 | mtbi 321 |
. . . . . 6
⊢ ¬
(⊤ ↔ ⊥) |
5 | 4 | exgen 1979 |
. . . . 5
⊢
∃𝑦 ¬
(⊤ ↔ ⊥) |
6 | | exnal 1830 |
. . . . 5
⊢
(∃𝑦 ¬
(⊤ ↔ ⊥) ↔ ¬ ∀𝑦(⊤ ↔ ⊥)) |
7 | 5, 6 | mpbi 229 |
. . . 4
⊢ ¬
∀𝑦(⊤ ↔
⊥) |
8 | | df-clab 2716 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∣ ⊤} ↔ [𝑦 / 𝑥]⊤) |
9 | | sbv 2092 |
. . . . . . 7
⊢ ([𝑦 / 𝑥]⊤ ↔ ⊤) |
10 | 8, 9 | bitr2i 275 |
. . . . . 6
⊢ (⊤
↔ 𝑦 ∈ {𝑥 ∣
⊤}) |
11 | | df-clab 2716 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∣ ⊥} ↔ [𝑦 / 𝑥]⊥) |
12 | | sbv 2092 |
. . . . . . 7
⊢ ([𝑦 / 𝑥]⊥ ↔ ⊥) |
13 | 11, 12 | bitr2i 275 |
. . . . . 6
⊢ (⊥
↔ 𝑦 ∈ {𝑥 ∣
⊥}) |
14 | 10, 13 | bibi12i 339 |
. . . . 5
⊢
((⊤ ↔ ⊥) ↔ (𝑦 ∈ {𝑥 ∣ ⊤} ↔ 𝑦 ∈ {𝑥 ∣ ⊥})) |
15 | 14 | albii 1823 |
. . . 4
⊢
(∀𝑦(⊤
↔ ⊥) ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ ⊤} ↔ 𝑦 ∈ {𝑥 ∣ ⊥})) |
16 | 7, 15 | mtbi 321 |
. . 3
⊢ ¬
∀𝑦(𝑦 ∈ {𝑥 ∣ ⊤} ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) |
17 | | dfcleq 2731 |
. . . 4
⊢ ({𝑥 ∣ ⊤} = {𝑥 ∣ ⊥} ↔
∀𝑦(𝑦 ∈ {𝑥 ∣ ⊤} ↔ 𝑦 ∈ {𝑥 ∣ ⊥})) |
18 | | dfv2 3425 |
. . . . . 6
⊢ V =
{𝑥 ∣
⊤} |
19 | 18 | eqcomi 2747 |
. . . . 5
⊢ {𝑥 ∣ ⊤} =
V |
20 | | dfnul4 4255 |
. . . . . 6
⊢ ∅ =
{𝑥 ∣
⊥} |
21 | 20 | eqcomi 2747 |
. . . . 5
⊢ {𝑥 ∣ ⊥} =
∅ |
22 | 19, 21 | eqeq12i 2756 |
. . . 4
⊢ ({𝑥 ∣ ⊤} = {𝑥 ∣ ⊥} ↔ V =
∅) |
23 | 17, 22 | bitr3i 276 |
. . 3
⊢
(∀𝑦(𝑦 ∈ {𝑥 ∣ ⊤} ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) ↔ V =
∅) |
24 | 16, 23 | mtbi 321 |
. 2
⊢ ¬ V
= ∅ |
25 | 24 | neir 2945 |
1
⊢ V ≠
∅ |