| Step | Hyp | Ref
| Expression |
| 1 | | fal 1554 |
. . . . . . 7
⊢ ¬
⊥ |
| 2 | | pm5.501 366 |
. . . . . . . 8
⊢ (⊤
→ (⊥ ↔ (⊤ ↔ ⊥))) |
| 3 | 2 | mptru 1547 |
. . . . . . 7
⊢ (⊥
↔ (⊤ ↔ ⊥)) |
| 4 | 1, 3 | mtbi 322 |
. . . . . 6
⊢ ¬
(⊤ ↔ ⊥) |
| 5 | 4 | exgen 1974 |
. . . . 5
⊢
∃𝑦 ¬
(⊤ ↔ ⊥) |
| 6 | | exnal 1827 |
. . . . 5
⊢
(∃𝑦 ¬
(⊤ ↔ ⊥) ↔ ¬ ∀𝑦(⊤ ↔ ⊥)) |
| 7 | 5, 6 | mpbi 230 |
. . . 4
⊢ ¬
∀𝑦(⊤ ↔
⊥) |
| 8 | | df-clab 2715 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∣ ⊤} ↔ [𝑦 / 𝑥]⊤) |
| 9 | | sbv 2089 |
. . . . . . 7
⊢ ([𝑦 / 𝑥]⊤ ↔ ⊤) |
| 10 | 8, 9 | bitr2i 276 |
. . . . . 6
⊢ (⊤
↔ 𝑦 ∈ {𝑥 ∣
⊤}) |
| 11 | | df-clab 2715 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∣ ⊥} ↔ [𝑦 / 𝑥]⊥) |
| 12 | | sbv 2089 |
. . . . . . 7
⊢ ([𝑦 / 𝑥]⊥ ↔ ⊥) |
| 13 | 11, 12 | bitr2i 276 |
. . . . . 6
⊢ (⊥
↔ 𝑦 ∈ {𝑥 ∣
⊥}) |
| 14 | 10, 13 | bibi12i 339 |
. . . . 5
⊢
((⊤ ↔ ⊥) ↔ (𝑦 ∈ {𝑥 ∣ ⊤} ↔ 𝑦 ∈ {𝑥 ∣ ⊥})) |
| 15 | 14 | albii 1819 |
. . . 4
⊢
(∀𝑦(⊤
↔ ⊥) ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ ⊤} ↔ 𝑦 ∈ {𝑥 ∣ ⊥})) |
| 16 | 7, 15 | mtbi 322 |
. . 3
⊢ ¬
∀𝑦(𝑦 ∈ {𝑥 ∣ ⊤} ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) |
| 17 | | dfcleq 2729 |
. . . 4
⊢ ({𝑥 ∣ ⊤} = {𝑥 ∣ ⊥} ↔
∀𝑦(𝑦 ∈ {𝑥 ∣ ⊤} ↔ 𝑦 ∈ {𝑥 ∣ ⊥})) |
| 18 | | dfv2 3467 |
. . . . . 6
⊢ V =
{𝑥 ∣
⊤} |
| 19 | 18 | eqcomi 2745 |
. . . . 5
⊢ {𝑥 ∣ ⊤} =
V |
| 20 | | dfnul4 4315 |
. . . . . 6
⊢ ∅ =
{𝑥 ∣
⊥} |
| 21 | 20 | eqcomi 2745 |
. . . . 5
⊢ {𝑥 ∣ ⊥} =
∅ |
| 22 | 19, 21 | eqeq12i 2754 |
. . . 4
⊢ ({𝑥 ∣ ⊤} = {𝑥 ∣ ⊥} ↔ V =
∅) |
| 23 | 17, 22 | bitr3i 277 |
. . 3
⊢
(∀𝑦(𝑦 ∈ {𝑥 ∣ ⊤} ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) ↔ V =
∅) |
| 24 | 16, 23 | mtbi 322 |
. 2
⊢ ¬ V
= ∅ |
| 25 | 24 | neir 2936 |
1
⊢ V ≠
∅ |