| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vn0 | Structured version Visualization version GIF version | ||
| Description: The universal class is not equal to the empty set. (Contributed by NM, 11-Sep-2008.) Avoid ax-8 2113, df-clel 2806. (Revised by GG, 6-Sep-2024.) |
| Ref | Expression |
|---|---|
| vn0 | ⊢ V ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vextru 2716 | . . . . . . 7 ⊢ 𝑦 ∈ {𝑥 ∣ ⊤} | |
| 2 | fal 1555 | . . . . . . 7 ⊢ ¬ ⊥ | |
| 3 | 1, 2 | 2th 264 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ ⊤} ↔ ¬ ⊥) |
| 4 | xor3 382 | . . . . . 6 ⊢ (¬ (𝑦 ∈ {𝑥 ∣ ⊤} ↔ ⊥) ↔ (𝑦 ∈ {𝑥 ∣ ⊤} ↔ ¬ ⊥)) | |
| 5 | 3, 4 | mpbir 231 | . . . . 5 ⊢ ¬ (𝑦 ∈ {𝑥 ∣ ⊤} ↔ ⊥) |
| 6 | 5 | exgen 1975 | . . . 4 ⊢ ∃𝑦 ¬ (𝑦 ∈ {𝑥 ∣ ⊤} ↔ ⊥) |
| 7 | exnal 1828 | . . . 4 ⊢ (∃𝑦 ¬ (𝑦 ∈ {𝑥 ∣ ⊤} ↔ ⊥) ↔ ¬ ∀𝑦(𝑦 ∈ {𝑥 ∣ ⊤} ↔ ⊥)) | |
| 8 | 6, 7 | mpbi 230 | . . 3 ⊢ ¬ ∀𝑦(𝑦 ∈ {𝑥 ∣ ⊤} ↔ ⊥) |
| 9 | dfv2 3439 | . . . . 5 ⊢ V = {𝑥 ∣ ⊤} | |
| 10 | dfnul4 4282 | . . . . 5 ⊢ ∅ = {𝑥 ∣ ⊥} | |
| 11 | 9, 10 | eqeq12i 2749 | . . . 4 ⊢ (V = ∅ ↔ {𝑥 ∣ ⊤} = {𝑥 ∣ ⊥}) |
| 12 | biidd 262 | . . . . 5 ⊢ (𝑥 = 𝑦 → (⊥ ↔ ⊥)) | |
| 13 | 12 | eqabbw 2804 | . . . 4 ⊢ ({𝑥 ∣ ⊤} = {𝑥 ∣ ⊥} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ ⊤} ↔ ⊥)) |
| 14 | 11, 13 | bitri 275 | . . 3 ⊢ (V = ∅ ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ ⊤} ↔ ⊥)) |
| 15 | 8, 14 | mtbir 323 | . 2 ⊢ ¬ V = ∅ |
| 16 | 15 | neir 2931 | 1 ⊢ V ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1539 = wceq 1541 ⊤wtru 1542 ⊥wfal 1553 ∃wex 1780 ∈ wcel 2111 {cab 2709 ≠ wne 2928 Vcvv 3436 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-ne 2929 df-v 3438 df-dif 3900 df-nul 4281 |
| This theorem is referenced by: uniintsn 4933 relrelss 6220 imasaddfnlem 17432 imasvscafn 17441 cmpfi 23323 fclscmp 23945 zarcmplem 33894 compne 44543 |
| Copyright terms: Public domain | W3C validator |