| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximdh | Structured version Visualization version GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 20-May-1996.) |
| Ref | Expression |
|---|---|
| eximdh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| eximdh.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| eximdh | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximdh.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | eximdh.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 2 | aleximi 1831 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: eximdv 1916 eximd 2215 nfeqf2 2380 ax6e2eq 44522 |
| Copyright terms: Public domain | W3C validator |