Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eximdh | Structured version Visualization version GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 20-May-1996.) |
Ref | Expression |
---|---|
eximdh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
eximdh.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
eximdh | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximdh.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | eximdh.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 2 | aleximi 1833 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1536 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 210 df-ex 1782 |
This theorem is referenced by: eximdv 1918 eximd 2214 nfeqf2 2384 ax6e2eq 41658 |
Copyright terms: Public domain | W3C validator |