MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eximdh Structured version   Visualization version   GIF version

Theorem eximdh 1955
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 20-May-1996.)
Hypotheses
Ref Expression
eximdh.1 (𝜑 → ∀𝑥𝜑)
eximdh.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
eximdh (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))

Proof of Theorem eximdh
StepHypRef Expression
1 eximdh.1 . 2 (𝜑 → ∀𝑥𝜑)
2 eximdh.2 . . 3 (𝜑 → (𝜓𝜒))
32aleximi 1919 . 2 (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
41, 3syl 17 1 (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1635  wex 1859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897
This theorem depends on definitions:  df-bi 198  df-ex 1860
This theorem is referenced by:  eximdv  2011  eximd  2254  eximdOLD  2373  ax6e2eq  39268
  Copyright terms: Public domain W3C validator