MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nexdh Structured version   Visualization version   GIF version

Theorem nexdh 1866
Description: Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002.)
Hypotheses
Ref Expression
nexdh.1 (𝜑 → ∀𝑥𝜑)
nexdh.2 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
nexdh (𝜑 → ¬ ∃𝑥𝜓)

Proof of Theorem nexdh
StepHypRef Expression
1 nexdh.1 . . 3 (𝜑 → ∀𝑥𝜑)
2 nexdh.2 . . 3 (𝜑 → ¬ 𝜓)
31, 2alrimih 1824 . 2 (𝜑 → ∀𝑥 ¬ 𝜓)
4 alnex 1781 . 2 (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓)
53, 4sylib 217 1 (𝜑 → ¬ ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 206  df-ex 1780
This theorem is referenced by:  nexdv  1937  nexd  2212
  Copyright terms: Public domain W3C validator