Proof of Theorem ax6e2eq
Step | Hyp | Ref
| Expression |
1 | | ax6ev 1974 |
. . . . . . 7
⊢
∃𝑥 𝑥 = 𝑢 |
2 | | hbae 2431 |
. . . . . . . 8
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑥∀𝑥 𝑥 = 𝑦) |
3 | | ax7 2020 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑢 → 𝑦 = 𝑢)) |
4 | 3 | sps 2180 |
. . . . . . . . 9
⊢
(∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑢 → 𝑦 = 𝑢)) |
5 | 4 | ancld 550 |
. . . . . . . 8
⊢
(∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦 = 𝑢))) |
6 | 2, 5 | eximdh 1868 |
. . . . . . 7
⊢
(∀𝑥 𝑥 = 𝑦 → (∃𝑥 𝑥 = 𝑢 → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢))) |
7 | 1, 6 | mpi 20 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) |
8 | 7 | axc4i 2320 |
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑥∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) |
9 | | axc11 2430 |
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∀𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢))) |
10 | 8, 9 | mpd 15 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) |
11 | | 19.2 1981 |
. . . 4
⊢
(∀𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) |
12 | 10, 11 | syl 17 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) |
13 | | excomim 2165 |
. . 3
⊢
(∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) |
14 | 12, 13 | syl 17 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) |
15 | | equtrr 2026 |
. . . 4
⊢ (𝑢 = 𝑣 → (𝑦 = 𝑢 → 𝑦 = 𝑣)) |
16 | 15 | anim2d 611 |
. . 3
⊢ (𝑢 = 𝑣 → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → (𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |
17 | 16 | 2eximdv 1923 |
. 2
⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |
18 | 14, 17 | syl5com 31 |
1
⊢
(∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |