| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximd | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.22 of [Margaris] p. 90, see exim 1833. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| eximd.1 | ⊢ Ⅎ𝑥𝜑 |
| eximd.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| eximd | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2194 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | eximd.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | eximdh 1863 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1778 Ⅎwnf 1782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: exlimd 2217 19.41 2234 2ax6elem 2473 2euexv 2629 mopick2 2635 2euex 2639 reximd2a 3255 spc2ed 3584 ssrexf 4030 rexdifi 4130 axprlem4OLD 5409 axprlem5OLD 5410 axpowndlem3 10621 axregndlem1 10624 axregnd 10626 padct 32667 dvelimexcased 35066 finminlem 36294 difunieq 37350 wl-euequf 37550 pmapglb2xN 39749 unitscyglem5 42175 infrpge 45334 fsumiunss 45562 islpcn 45626 stoweidlem34 46021 stoweidlem35 46022 sge0rpcpnf 46408 |
| Copyright terms: Public domain | W3C validator |