MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eximd Structured version   Visualization version   GIF version

Theorem eximd 2210
Description: Deduction form of Theorem 19.22 of [Margaris] p. 90, see exim 1837. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
eximd.1 𝑥𝜑
eximd.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
eximd (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))

Proof of Theorem eximd
StepHypRef Expression
1 eximd.1 . . 3 𝑥𝜑
21nf5ri 2189 . 2 (𝜑 → ∀𝑥𝜑)
3 eximd.2 . 2 (𝜑 → (𝜓𝜒))
42, 3eximdh 1868 1 (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1782  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by:  exlimd  2212  19.41  2229  2ax6elem  2470  2euexv  2628  mopick2  2634  2euex  2638  reximd2a  3267  spc2ed  3592  ssrexf  4049  rexdifi  4146  axprlem4  5425  axprlem5  5426  axpowndlem3  10594  axregndlem1  10597  axregnd  10599  padct  31944  finminlem  35203  difunieq  36255  wl-euequf  36439  pmapglb2xN  38643  infrpge  44061  fsumiunss  44291  islpcn  44355  stoweidlem34  44750  stoweidlem35  44751  sge0rpcpnf  45137
  Copyright terms: Public domain W3C validator