| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximd | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.22 of [Margaris] p. 90, see exim 1834. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| eximd.1 | ⊢ Ⅎ𝑥𝜑 |
| eximd.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| eximd | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2196 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | eximd.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | eximdh 1864 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: exlimd 2219 19.41 2236 2ax6elem 2468 2euexv 2624 mopick2 2630 2euex 2634 reximd2a 3247 spc2ed 3567 ssrexf 4013 rexdifi 4113 axprlem4OLD 5384 axprlem5OLD 5385 axpowndlem3 10552 axregndlem1 10555 axregnd 10557 padct 32643 dvelimexcased 35067 finminlem 36306 difunieq 37362 wl-euequf 37562 pmapglb2xN 39766 unitscyglem5 42187 infrpge 45347 fsumiunss 45573 islpcn 45637 stoweidlem34 46032 stoweidlem35 46033 sge0rpcpnf 46419 |
| Copyright terms: Public domain | W3C validator |