Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eximd | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.22 of [Margaris] p. 90, see exim 1836. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
eximd.1 | ⊢ Ⅎ𝑥𝜑 |
eximd.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
eximd | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2188 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | eximd.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | eximdh 1867 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: exlimd 2211 19.41 2228 2ax6elem 2470 2euexv 2633 mopick2 2639 2euex 2643 reximd2a 3245 spc2ed 3540 ssrexf 3985 rexdifi 4080 axprlem4 5349 axprlem5 5350 axpowndlem3 10355 axregndlem1 10358 axregnd 10360 padct 31054 finminlem 34507 difunieq 35545 wl-euequf 35729 pmapglb2xN 37786 infrpge 42890 fsumiunss 43116 islpcn 43180 stoweidlem34 43575 stoweidlem35 43576 sge0rpcpnf 43959 |
Copyright terms: Public domain | W3C validator |