MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eximd Structured version   Visualization version   GIF version

Theorem eximd 2215
Description: Deduction form of Theorem 19.22 of [Margaris] p. 90, see exim 1833. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
eximd.1 𝑥𝜑
eximd.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
eximd (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))

Proof of Theorem eximd
StepHypRef Expression
1 eximd.1 . . 3 𝑥𝜑
21nf5ri 2194 . 2 (𝜑 → ∀𝑥𝜑)
3 eximd.2 . 2 (𝜑 → (𝜓𝜒))
42, 3eximdh 1863 1 (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1778  wnf 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-12 2176
This theorem depends on definitions:  df-bi 207  df-ex 1779  df-nf 1783
This theorem is referenced by:  exlimd  2217  19.41  2234  2ax6elem  2473  2euexv  2629  mopick2  2635  2euex  2639  reximd2a  3255  spc2ed  3584  ssrexf  4030  rexdifi  4130  axprlem4OLD  5409  axprlem5OLD  5410  axpowndlem3  10621  axregndlem1  10624  axregnd  10626  padct  32667  dvelimexcased  35066  finminlem  36294  difunieq  37350  wl-euequf  37550  pmapglb2xN  39749  unitscyglem5  42175  infrpge  45334  fsumiunss  45562  islpcn  45626  stoweidlem34  46021  stoweidlem35  46022  sge0rpcpnf  46408
  Copyright terms: Public domain W3C validator