![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eximd | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.22 of [Margaris] p. 90, see exim 1828. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
eximd.1 | ⊢ Ⅎ𝑥𝜑 |
eximd.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
eximd | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2180 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | eximd.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | eximdh 1859 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1773 Ⅎwnf 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-12 2163 |
This theorem depends on definitions: df-bi 206 df-ex 1774 df-nf 1778 |
This theorem is referenced by: exlimd 2203 19.41 2220 2ax6elem 2461 2euexv 2619 mopick2 2625 2euex 2629 reximd2a 3258 spc2ed 3583 ssrexf 4041 rexdifi 4138 axprlem4 5415 axprlem5 5416 axpowndlem3 10591 axregndlem1 10594 axregnd 10596 padct 32416 finminlem 35694 difunieq 36746 wl-euequf 36933 pmapglb2xN 39137 infrpge 44571 fsumiunss 44801 islpcn 44865 stoweidlem34 45260 stoweidlem35 45261 sge0rpcpnf 45647 |
Copyright terms: Public domain | W3C validator |