MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eximd Structured version   Visualization version   GIF version

Theorem eximd 2209
Description: Deduction form of Theorem 19.22 of [Margaris] p. 90, see exim 1836. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
eximd.1 𝑥𝜑
eximd.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
eximd (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))

Proof of Theorem eximd
StepHypRef Expression
1 eximd.1 . . 3 𝑥𝜑
21nf5ri 2188 . 2 (𝜑 → ∀𝑥𝜑)
3 eximd.2 . 2 (𝜑 → (𝜓𝜒))
42, 3eximdh 1867 1 (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1782  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by:  exlimd  2211  19.41  2228  2ax6elem  2470  2euexv  2633  mopick2  2639  2euex  2643  reximd2a  3245  spc2ed  3540  ssrexf  3985  rexdifi  4080  axprlem4  5349  axprlem5  5350  axpowndlem3  10355  axregndlem1  10358  axregnd  10360  padct  31054  finminlem  34507  difunieq  35545  wl-euequf  35729  pmapglb2xN  37786  infrpge  42890  fsumiunss  43116  islpcn  43180  stoweidlem34  43575  stoweidlem35  43576  sge0rpcpnf  43959
  Copyright terms: Public domain W3C validator