MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eximd Structured version   Visualization version   GIF version

Theorem eximd 2217
Description: Deduction form of Theorem 19.22 of [Margaris] p. 90, see exim 1832. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
eximd.1 𝑥𝜑
eximd.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
eximd (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))

Proof of Theorem eximd
StepHypRef Expression
1 eximd.1 . . 3 𝑥𝜑
21nf5ri 2196 . 2 (𝜑 → ∀𝑥𝜑)
3 eximd.2 . 2 (𝜑 → (𝜓𝜒))
42, 3eximdh 1863 1 (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1777  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1778  df-nf 1782
This theorem is referenced by:  exlimd  2219  19.41  2236  2ax6elem  2478  2euexv  2634  mopick2  2640  2euex  2644  reximd2a  3275  spc2ed  3614  ssrexf  4075  rexdifi  4173  axprlem4  5444  axprlem5  5445  axpowndlem3  10668  axregndlem1  10671  axregnd  10673  padct  32733  dvelimexcased  35053  finminlem  36284  difunieq  37340  wl-euequf  37528  pmapglb2xN  39729  unitscyglem5  42156  infrpge  45266  fsumiunss  45496  islpcn  45560  stoweidlem34  45955  stoweidlem35  45956  sge0rpcpnf  46342
  Copyright terms: Public domain W3C validator