| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximd | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.22 of [Margaris] p. 90, see exim 1834. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| eximd.1 | ⊢ Ⅎ𝑥𝜑 |
| eximd.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| eximd | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2196 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | eximd.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | eximdh 1864 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: exlimd 2219 19.41 2236 2ax6elem 2468 2euexv 2624 mopick2 2630 2euex 2634 reximd2a 3245 spc2ed 3564 ssrexf 4010 rexdifi 4109 axprlem4OLD 5379 axprlem5OLD 5380 axpowndlem3 10528 axregndlem1 10531 axregnd 10533 padct 32616 dvelimexcased 35040 finminlem 36279 difunieq 37335 wl-euequf 37535 pmapglb2xN 39739 unitscyglem5 42160 infrpge 45320 fsumiunss 45546 islpcn 45610 stoweidlem34 46005 stoweidlem35 46006 sge0rpcpnf 46392 |
| Copyright terms: Public domain | W3C validator |