![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eximd | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.22 of [Margaris] p. 90, see exim 1832. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
eximd.1 | ⊢ Ⅎ𝑥𝜑 |
eximd.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
eximd | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2196 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | eximd.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | eximdh 1863 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1777 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-nf 1782 |
This theorem is referenced by: exlimd 2219 19.41 2236 2ax6elem 2478 2euexv 2634 mopick2 2640 2euex 2644 reximd2a 3275 spc2ed 3614 ssrexf 4075 rexdifi 4173 axprlem4 5444 axprlem5 5445 axpowndlem3 10668 axregndlem1 10671 axregnd 10673 padct 32733 dvelimexcased 35053 finminlem 36284 difunieq 37340 wl-euequf 37528 pmapglb2xN 39729 unitscyglem5 42156 infrpge 45266 fsumiunss 45496 islpcn 45560 stoweidlem34 45955 stoweidlem35 45956 sge0rpcpnf 46342 |
Copyright terms: Public domain | W3C validator |