Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eximd | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.22 of [Margaris] p. 90, see exim 1837. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
eximd.1 | ⊢ Ⅎ𝑥𝜑 |
eximd.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
eximd | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2191 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | eximd.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | eximdh 1868 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: exlimd 2214 19.41 2231 2ax6elem 2470 2euexv 2633 mopick2 2639 2euex 2643 reximd2a 3240 spc2ed 3530 ssrexf 3981 rexdifi 4076 axprlem4 5344 axprlem5 5345 axpowndlem3 10286 axregndlem1 10289 axregnd 10291 padct 30956 finminlem 34434 difunieq 35472 wl-euequf 35656 pmapglb2xN 37713 infrpge 42780 fsumiunss 43006 islpcn 43070 stoweidlem34 43465 stoweidlem35 43466 sge0rpcpnf 43849 |
Copyright terms: Public domain | W3C validator |