MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eximd Structured version   Visualization version   GIF version

Theorem eximd 2217
Description: Deduction form of Theorem 19.22 of [Margaris] p. 90, see exim 1834. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
eximd.1 𝑥𝜑
eximd.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
eximd (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))

Proof of Theorem eximd
StepHypRef Expression
1 eximd.1 . . 3 𝑥𝜑
21nf5ri 2196 . 2 (𝜑 → ∀𝑥𝜑)
3 eximd.2 . 2 (𝜑 → (𝜓𝜒))
42, 3eximdh 1864 1 (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-nf 1784
This theorem is referenced by:  exlimd  2219  19.41  2236  2ax6elem  2475  2euexv  2631  mopick2  2637  2euex  2641  reximd2a  3256  spc2ed  3585  ssrexf  4030  rexdifi  4130  axprlem4OLD  5404  axprlem5OLD  5405  axpowndlem3  10618  axregndlem1  10621  axregnd  10623  padct  32702  dvelimexcased  35113  finminlem  36341  difunieq  37397  wl-euequf  37597  pmapglb2xN  39796  unitscyglem5  42217  infrpge  45345  fsumiunss  45571  islpcn  45635  stoweidlem34  46030  stoweidlem35  46031  sge0rpcpnf  46417
  Copyright terms: Public domain W3C validator