| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximd | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.22 of [Margaris] p. 90, see exim 1834. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| eximd.1 | ⊢ Ⅎ𝑥𝜑 |
| eximd.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| eximd | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2196 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | eximd.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | eximdh 1864 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: exlimd 2219 19.41 2236 2ax6elem 2468 2euexv 2624 mopick2 2630 2euex 2634 reximd2a 3239 spc2ed 3556 ssrexf 4002 rexdifi 4101 axprlem4OLD 5368 axprlem5OLD 5369 axpowndlem3 10493 axregndlem1 10496 axregnd 10498 padct 32662 dvelimexcased 35044 finminlem 36292 difunieq 37348 wl-euequf 37548 pmapglb2xN 39751 unitscyglem5 42172 infrpge 45331 fsumiunss 45556 islpcn 45620 stoweidlem34 46015 stoweidlem35 46016 sge0rpcpnf 46402 |
| Copyright terms: Public domain | W3C validator |