| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximd | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.22 of [Margaris] p. 90, see exim 1834. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| eximd.1 | ⊢ Ⅎ𝑥𝜑 |
| eximd.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| eximd | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2196 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | eximd.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | eximdh 1864 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: exlimd 2219 19.41 2236 2ax6elem 2475 2euexv 2631 mopick2 2637 2euex 2641 reximd2a 3256 spc2ed 3585 ssrexf 4030 rexdifi 4130 axprlem4OLD 5404 axprlem5OLD 5405 axpowndlem3 10618 axregndlem1 10621 axregnd 10623 padct 32702 dvelimexcased 35113 finminlem 36341 difunieq 37397 wl-euequf 37597 pmapglb2xN 39796 unitscyglem5 42217 infrpge 45345 fsumiunss 45571 islpcn 45635 stoweidlem34 46030 stoweidlem35 46031 sge0rpcpnf 46417 |
| Copyright terms: Public domain | W3C validator |