MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eximd Structured version   Visualization version   GIF version

Theorem eximd 2219
Description: Deduction form of Theorem 19.22 of [Margaris] p. 90, see exim 1835. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
eximd.1 𝑥𝜑
eximd.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
eximd (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))

Proof of Theorem eximd
StepHypRef Expression
1 eximd.1 . . 3 𝑥𝜑
21nf5ri 2198 . 2 (𝜑 → ∀𝑥𝜑)
3 eximd.2 . 2 (𝜑 → (𝜓𝜒))
42, 3eximdh 1865 1 (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-ex 1781  df-nf 1785
This theorem is referenced by:  exlimd  2221  19.41  2238  2ax6elem  2470  2euexv  2626  mopick2  2632  2euex  2636  reximd2a  3242  spc2ed  3551  ssrexf  3996  rexdifi  4097  axprlem4OLD  5365  axprlem5OLD  5366  axpowndlem3  10490  axregndlem1  10493  axregnd  10495  padct  32701  dvelimexcased  35089  finminlem  36360  difunieq  37416  wl-euequf  37616  pmapglb2xN  39819  unitscyglem5  42240  infrpge  45398  fsumiunss  45623  islpcn  45685  stoweidlem34  46080  stoweidlem35  46081  sge0rpcpnf  46467
  Copyright terms: Public domain W3C validator