MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeqf2 Structured version   Visualization version   GIF version

Theorem nfeqf2 2368
Description: An equation between setvar is free of any other setvar. Usage of this theorem is discouraged because it depends on ax-13 2363. (Contributed by Wolf Lammen, 9-Jun-2019.) Remove dependency on ax-12 2163. (Revised by Wolf Lammen, 16-Dec-2022.) (New usage is discouraged.)
Assertion
Ref Expression
nfeqf2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦)
Distinct variable group:   𝑥,𝑧

Proof of Theorem nfeqf2
StepHypRef Expression
1 exnal 1821 . 2 (∃𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
2 hbe1 2131 . . . . 5 (∃𝑥 𝑧 = 𝑦 → ∀𝑥𝑥 𝑧 = 𝑦)
3 ax13lem2 2367 . . . . . 6 𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦𝑧 = 𝑦))
4 ax13lem1 2365 . . . . . 6 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
53, 4syldc 48 . . . . 5 (∃𝑥 𝑧 = 𝑦 → (¬ 𝑥 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
62, 5eximdh 1859 . . . 4 (∃𝑥 𝑧 = 𝑦 → (∃𝑥 ¬ 𝑥 = 𝑦 → ∃𝑥𝑥 𝑧 = 𝑦))
7 hbe1a 2132 . . . 4 (∃𝑥𝑥 𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)
86, 7syl6com 37 . . 3 (∃𝑥 ¬ 𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
98nfd 1784 . 2 (∃𝑥 ¬ 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦)
101, 9sylbir 234 1 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1531  wex 1773  wnf 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-13 2363
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-nf 1778
This theorem is referenced by:  dveeq2  2369  nfeqf1  2370  sb4b  2466  sbal1  2519  copsexg  5482  axrepndlem1  10584  axpowndlem2  10590  axpowndlem3  10591  bj-dvelimdv  36231  bj-dvelimdv1  36232  wl-equsb3  36925  wl-sbcom2d-lem1  36928  wl-mo2df  36939  wl-eudf  36941  wl-euequf  36943
  Copyright terms: Public domain W3C validator