Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeqf2 | Structured version Visualization version GIF version |
Description: An equation between setvar is free of any other setvar. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Wolf Lammen, 9-Jun-2019.) Remove dependency on ax-12 2173. (Revised by Wolf Lammen, 16-Dec-2022.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfeqf2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exnal 1830 | . 2 ⊢ (∃𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) | |
2 | hbe1 2141 | . . . . 5 ⊢ (∃𝑥 𝑧 = 𝑦 → ∀𝑥∃𝑥 𝑧 = 𝑦) | |
3 | ax13lem2 2376 | . . . . . 6 ⊢ (¬ 𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦 → 𝑧 = 𝑦)) | |
4 | ax13lem1 2374 | . . . . . 6 ⊢ (¬ 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | |
5 | 3, 4 | syldc 48 | . . . . 5 ⊢ (∃𝑥 𝑧 = 𝑦 → (¬ 𝑥 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
6 | 2, 5 | eximdh 1868 | . . . 4 ⊢ (∃𝑥 𝑧 = 𝑦 → (∃𝑥 ¬ 𝑥 = 𝑦 → ∃𝑥∀𝑥 𝑧 = 𝑦)) |
7 | hbe1a 2142 | . . . 4 ⊢ (∃𝑥∀𝑥 𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) | |
8 | 6, 7 | syl6com 37 | . . 3 ⊢ (∃𝑥 ¬ 𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
9 | 8 | nfd 1794 | . 2 ⊢ (∃𝑥 ¬ 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) |
10 | 1, 9 | sylbir 234 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 |
This theorem is referenced by: dveeq2 2378 nfeqf1 2379 sb4b 2475 sb4bOLD 2476 sbal1 2533 copsexg 5399 axrepndlem1 10279 axpowndlem2 10285 axpowndlem3 10286 bj-dvelimdv 34962 bj-dvelimdv1 34963 wl-equsb3 35638 wl-sbcom2d-lem1 35641 wl-mo2df 35652 wl-eudf 35654 wl-euequf 35656 |
Copyright terms: Public domain | W3C validator |