MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeqf2 Structured version   Visualization version   GIF version

Theorem nfeqf2 2375
Description: An equation between setvar is free of any other setvar. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by Wolf Lammen, 9-Jun-2019.) Remove dependency on ax-12 2170. (Revised by Wolf Lammen, 16-Dec-2022.) (New usage is discouraged.)
Assertion
Ref Expression
nfeqf2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦)
Distinct variable group:   𝑥,𝑧

Proof of Theorem nfeqf2
StepHypRef Expression
1 exnal 1828 . 2 (∃𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
2 hbe1 2138 . . . . 5 (∃𝑥 𝑧 = 𝑦 → ∀𝑥𝑥 𝑧 = 𝑦)
3 ax13lem2 2374 . . . . . 6 𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦𝑧 = 𝑦))
4 ax13lem1 2372 . . . . . 6 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
53, 4syldc 48 . . . . 5 (∃𝑥 𝑧 = 𝑦 → (¬ 𝑥 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
62, 5eximdh 1866 . . . 4 (∃𝑥 𝑧 = 𝑦 → (∃𝑥 ¬ 𝑥 = 𝑦 → ∃𝑥𝑥 𝑧 = 𝑦))
7 hbe1a 2139 . . . 4 (∃𝑥𝑥 𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)
86, 7syl6com 37 . . 3 (∃𝑥 ¬ 𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
98nfd 1791 . 2 (∃𝑥 ¬ 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦)
101, 9sylbir 234 1 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538  wex 1780  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-13 2370
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1781  df-nf 1785
This theorem is referenced by:  dveeq2  2376  nfeqf1  2377  sb4b  2473  sbal1  2526  copsexg  5491  axrepndlem1  10593  axpowndlem2  10599  axpowndlem3  10600  bj-dvelimdv  36194  bj-dvelimdv1  36195  wl-equsb3  36885  wl-sbcom2d-lem1  36888  wl-mo2df  36899  wl-eudf  36901  wl-euequf  36903
  Copyright terms: Public domain W3C validator