MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeqf2 Structured version   Visualization version   GIF version

Theorem nfeqf2 2377
Description: An equation between setvar is free of any other setvar. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Wolf Lammen, 9-Jun-2019.) Remove dependency on ax-12 2173. (Revised by Wolf Lammen, 16-Dec-2022.) (New usage is discouraged.)
Assertion
Ref Expression
nfeqf2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦)
Distinct variable group:   𝑥,𝑧

Proof of Theorem nfeqf2
StepHypRef Expression
1 exnal 1830 . 2 (∃𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
2 hbe1 2141 . . . . 5 (∃𝑥 𝑧 = 𝑦 → ∀𝑥𝑥 𝑧 = 𝑦)
3 ax13lem2 2376 . . . . . 6 𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦𝑧 = 𝑦))
4 ax13lem1 2374 . . . . . 6 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
53, 4syldc 48 . . . . 5 (∃𝑥 𝑧 = 𝑦 → (¬ 𝑥 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
62, 5eximdh 1868 . . . 4 (∃𝑥 𝑧 = 𝑦 → (∃𝑥 ¬ 𝑥 = 𝑦 → ∃𝑥𝑥 𝑧 = 𝑦))
7 hbe1a 2142 . . . 4 (∃𝑥𝑥 𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)
86, 7syl6com 37 . . 3 (∃𝑥 ¬ 𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
98nfd 1794 . 2 (∃𝑥 ¬ 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦)
101, 9sylbir 234 1 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  wex 1783  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788
This theorem is referenced by:  dveeq2  2378  nfeqf1  2379  sb4b  2475  sb4bOLD  2476  sbal1  2533  copsexg  5399  axrepndlem1  10279  axpowndlem2  10285  axpowndlem3  10286  bj-dvelimdv  34962  bj-dvelimdv1  34963  wl-equsb3  35638  wl-sbcom2d-lem1  35641  wl-mo2df  35652  wl-eudf  35654  wl-euequf  35656
  Copyright terms: Public domain W3C validator