Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eximp-surprise Structured version   Visualization version   GIF version

Theorem eximp-surprise 44250
Description: Show what implication inside "there exists" really expands to (using implication directly inside "there exists" is usually a mistake).

Those inexperienced with formal notations of classical logic may use expressions combining "there exists" with implication. That is usually a mistake, because as proven using imor 839, such an expression can be rewritten using not with or - and that is often not what the author intended. New users of formal notation who use "there exists" with an implication should consider if they meant "and" instead of "implies". A stark example is shown in eximp-surprise2 44251. See also alimp-surprise 44246 and empty-surprise 44248. (Contributed by David A. Wheeler, 17-Oct-2018.)

Assertion
Ref Expression
eximp-surprise (∃𝑥(𝜑𝜓) ↔ ∃𝑥𝜑𝜓))

Proof of Theorem eximp-surprise
StepHypRef Expression
1 imor 839 . 2 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
21exbii 1810 1 (∃𝑥(𝜑𝜓) ↔ ∃𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wo 833  wex 1742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772
This theorem depends on definitions:  df-bi 199  df-or 834  df-ex 1743
This theorem is referenced by:  eximp-surprise2  44251
  Copyright terms: Public domain W3C validator