Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  empty-surprise2 Structured version   Visualization version   GIF version

Theorem empty-surprise2 49762
Description: "Prove" that false is true when using a restricted "for all" over the empty set, to demonstrate that the expression is always true if the value ranges over the empty set.

Those inexperienced with formal notations of classical logic can be surprised with what restricted "for all" does over an empty set. We proved the general case in empty-surprise 49761. Here we prove an extreme example: we "prove" that false is true. Of course, we actually do no such thing (see notfal 1568); the problem is that restricted "for all" works in ways that might seem counterintuitive to the inexperienced when given an empty set. Solutions to this can include requiring that the set not be empty or by using the allsome quantifier df-alsc 49768. (Contributed by David A. Wheeler, 20-Oct-2018.)

Hypothesis
Ref Expression
empty-surprise2.1 ¬ ∃𝑥 𝑥𝐴
Assertion
Ref Expression
empty-surprise2 𝑥𝐴

Proof of Theorem empty-surprise2
StepHypRef Expression
1 empty-surprise2.1 . 2 ¬ ∃𝑥 𝑥𝐴
21empty-surprise 49761 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wfal 1552  wex 1779  wcel 2109  wral 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-ral 3046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator