Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  empty-surprise2 Structured version   Visualization version   GIF version

Theorem empty-surprise2 48139
Description: "Prove" that false is true when using a restricted "for all" over the empty set, to demonstrate that the expression is always true if the value ranges over the empty set.

Those inexperienced with formal notations of classical logic can be surprised with what restricted "for all" does over an empty set. We proved the general case in empty-surprise 48138. Here we prove an extreme example: we "prove" that false is true. Of course, we actually do no such thing (see notfal 1562); the problem is that restricted "for all" works in ways that might seem counterintuitive to the inexperienced when given an empty set. Solutions to this can include requiring that the set not be empty or by using the allsome quantifier df-alsc 48145. (Contributed by David A. Wheeler, 20-Oct-2018.)

Hypothesis
Ref Expression
empty-surprise2.1 ¬ ∃𝑥 𝑥𝐴
Assertion
Ref Expression
empty-surprise2 𝑥𝐴

Proof of Theorem empty-surprise2
StepHypRef Expression
1 empty-surprise2.1 . 2 ¬ ∃𝑥 𝑥𝐴
21empty-surprise 48138 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wfal 1546  wex 1774  wcel 2099  wral 3056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-12 2164
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ex 1775  df-ral 3057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator