Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  empty-surprise2 Structured version   Visualization version   GIF version

Theorem empty-surprise2 49139
Description: "Prove" that false is true when using a restricted "for all" over the empty set, to demonstrate that the expression is always true if the value ranges over the empty set.

Those inexperienced with formal notations of classical logic can be surprised with what restricted "for all" does over an empty set. We proved the general case in empty-surprise 49138. Here we prove an extreme example: we "prove" that false is true. Of course, we actually do no such thing (see notfal 1567); the problem is that restricted "for all" works in ways that might seem counterintuitive to the inexperienced when given an empty set. Solutions to this can include requiring that the set not be empty or by using the allsome quantifier df-alsc 49145. (Contributed by David A. Wheeler, 20-Oct-2018.)

Hypothesis
Ref Expression
empty-surprise2.1 ¬ ∃𝑥 𝑥𝐴
Assertion
Ref Expression
empty-surprise2 𝑥𝐴

Proof of Theorem empty-surprise2
StepHypRef Expression
1 empty-surprise2.1 . 2 ¬ ∃𝑥 𝑥𝐴
21empty-surprise 49138 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wfal 1551  wex 1778  wcel 2108  wral 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ex 1779  df-ral 3062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator