Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  empty-surprise2 Structured version   Visualization version   GIF version

Theorem empty-surprise2 49823
Description: "Prove" that false is true when using a restricted "for all" over the empty set, to demonstrate that the expression is always true if the value ranges over the empty set.

Those inexperienced with formal notations of classical logic can be surprised with what restricted "for all" does over an empty set. We proved the general case in empty-surprise 49822. Here we prove an extreme example: we "prove" that false is true. Of course, we actually do no such thing (see notfal 1569); the problem is that restricted "for all" works in ways that might seem counterintuitive to the inexperienced when given an empty set. Solutions to this can include requiring that the set not be empty or by using the allsome quantifier df-alsc 49829. (Contributed by David A. Wheeler, 20-Oct-2018.)

Hypothesis
Ref Expression
empty-surprise2.1 ¬ ∃𝑥 𝑥𝐴
Assertion
Ref Expression
empty-surprise2 𝑥𝐴

Proof of Theorem empty-surprise2
StepHypRef Expression
1 empty-surprise2.1 . 2 ¬ ∃𝑥 𝑥𝐴
21empty-surprise 49822 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wfal 1553  wex 1780  wcel 2111  wral 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-ral 3048
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator