MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2exlem Structured version   Visualization version   GIF version

Theorem r2exlem 3133
Description: Lemma factoring out common proof steps in r2exf 3270 an r2ex 3186. Introduced to reduce dependencies on axioms. (Contributed by Wolf Lammen, 10-Jan-2020.)
Hypothesis
Ref Expression
r2exlem.1 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ¬ 𝜑))
Assertion
Ref Expression
r2exlem (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))

Proof of Theorem r2exlem
StepHypRef Expression
1 exnal 1821 . . 3 (∃𝑥 ¬ ∀𝑦((𝑥𝐴𝑦𝐵) → ¬ 𝜑) ↔ ¬ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ¬ 𝜑))
2 r2exlem.1 . . 3 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ¬ 𝜑))
31, 2xchbinxr 334 . 2 (∃𝑥 ¬ ∀𝑦((𝑥𝐴𝑦𝐵) → ¬ 𝜑) ↔ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑)
4 exnalimn 1838 . . 3 (∃𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ¬ ∀𝑦((𝑥𝐴𝑦𝐵) → ¬ 𝜑))
54exbii 1842 . 2 (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ∃𝑥 ¬ ∀𝑦((𝑥𝐴𝑦𝐵) → ¬ 𝜑))
6 ralnex2 3123 . . 3 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴𝑦𝐵 𝜑)
76con2bii 356 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑)
83, 5, 73bitr4ri 303 1 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wal 1531  wex 1773  wcel 2098  wral 3051  wrex 3060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-ral 3052  df-rex 3061
This theorem is referenced by:  r2ex  3186  r2exf  3270
  Copyright terms: Public domain W3C validator