Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alinexa | Structured version Visualization version GIF version |
Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
alinexa | ⊢ (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnang 1847 | . 2 ⊢ (∀𝑥(𝜑 → ¬ 𝜓) ↔ ∀𝑥 ¬ (𝜑 ∧ 𝜓)) | |
2 | alnex 1787 | . 2 ⊢ (∀𝑥 ¬ (𝜑 ∧ 𝜓) ↔ ¬ ∃𝑥(𝜑 ∧ 𝜓)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1539 ∃wex 1785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 |
This theorem is referenced by: exnalimn 1849 equsexvw 2011 sbn 2280 zfregs2 9474 ac6n 10225 nnunb 12212 alexsubALTlem3 23181 nmobndseqi 29120 bj-equsexvwd 34942 difunieq 35524 frege124d 41322 zfregs2VD 42414 |
Copyright terms: Public domain | W3C validator |