MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alinexa Structured version   Visualization version   GIF version

Theorem alinexa 1850
Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
alinexa (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑𝜓))

Proof of Theorem alinexa
StepHypRef Expression
1 imnang 1849 . 2 (∀𝑥(𝜑 → ¬ 𝜓) ↔ ∀𝑥 ¬ (𝜑𝜓))
2 alnex 1789 . 2 (∀𝑥 ¬ (𝜑𝜓) ↔ ¬ ∃𝑥(𝜑𝜓))
31, 2bitri 278 1 (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1541  wex 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788
This theorem is referenced by:  exnalimn  1851  equsexvw  2013  sbn  2282  zfregs2  9373  ac6n  10123  nnunb  12110  alexsubALTlem3  22970  nmobndseqi  28884  bj-equsexvwd  34726  difunieq  35308  frege124d  41074  zfregs2VD  42162
  Copyright terms: Public domain W3C validator