Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  alinexa Structured version   Visualization version   GIF version

Theorem alinexa 1844
 Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
alinexa (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑𝜓))

Proof of Theorem alinexa
StepHypRef Expression
1 imnang 1843 . 2 (∀𝑥(𝜑 → ¬ 𝜓) ↔ ∀𝑥 ¬ (𝜑𝜓))
2 alnex 1783 . 2 (∀𝑥 ¬ (𝜑𝜓) ↔ ¬ ∃𝑥(𝜑𝜓))
31, 2bitri 278 1 (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536  ∃wex 1781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782 This theorem is referenced by:  exnalimn  1845  equs3OLD  1966  equsexvw  2012  sbn  2288  zfregs2  9151  ac6n  9884  nnunb  11871  alexsubALTlem3  22632  nmobndseqi  28540  difunieq  34671  wl-dfrexex  34893  frege124d  40241  zfregs2VD  41330
 Copyright terms: Public domain W3C validator