Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alinexa | Structured version Visualization version GIF version |
Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
alinexa | ⊢ (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnang 1843 | . 2 ⊢ (∀𝑥(𝜑 → ¬ 𝜓) ↔ ∀𝑥 ¬ (𝜑 ∧ 𝜓)) | |
2 | alnex 1782 | . 2 ⊢ (∀𝑥 ¬ (𝜑 ∧ 𝜓) ↔ ¬ ∃𝑥(𝜑 ∧ 𝜓)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1538 ∃wex 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 |
This theorem is referenced by: exnalimn 1845 equsexvw 2007 sbn 2276 zfregs2 9590 ac6n 10342 nnunb 12330 alexsubALTlem3 23306 nmobndseqi 29429 bj-equsexvwd 35059 difunieq 35658 frege124d 41698 zfregs2VD 42790 |
Copyright terms: Public domain | W3C validator |