MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp5l Structured version   Visualization version   GIF version

Theorem exp5l 437
Description: An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
Hypothesis
Ref Expression
exp5l.1 (𝜑 → (((𝜓𝜒) ∧ (𝜃𝜏)) → 𝜂))
Assertion
Ref Expression
exp5l (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))

Proof of Theorem exp5l
StepHypRef Expression
1 exp5l.1 . . 3 (𝜑 → (((𝜓𝜒) ∧ (𝜃𝜏)) → 𝜂))
21expd 404 . 2 (𝜑 → ((𝜓𝜒) → ((𝜃𝜏) → 𝜂)))
32exp5c 435 1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 198  df-an 385
This theorem is referenced by:  erclwwlktr  27227  erclwwlkntr  27284  exp512  32678
  Copyright terms: Public domain W3C validator