MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlkntr Structured version   Visualization version   GIF version

Theorem erclwwlkntr 30051
Description: is a transitive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlkntr ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡,𝑥   𝑦,𝑛,𝑡,𝑢,𝑥   𝑛,𝑊   𝑧,𝑛,𝑡,𝑢,𝑦,𝑥
Allowed substitution hints:   (𝑥,𝑦,𝑧,𝑢,𝑡,𝑛)   𝐺(𝑥,𝑦,𝑧,𝑢,𝑡,𝑛)   𝑁(𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem erclwwlkntr
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3440 . 2 𝑥 ∈ V
2 vex 3440 . 2 𝑦 ∈ V
3 vex 3440 . 2 𝑧 ∈ V
4 erclwwlkn.w . . . . . 6 𝑊 = (𝑁 ClWWalksN 𝐺)
5 erclwwlkn.r . . . . . 6 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
64, 5erclwwlkneqlen 30048 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → (♯‘𝑥) = (♯‘𝑦)))
763adant3 1132 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → (♯‘𝑥) = (♯‘𝑦)))
84, 5erclwwlkneqlen 30048 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → (♯‘𝑦) = (♯‘𝑧)))
983adant1 1130 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → (♯‘𝑦) = (♯‘𝑧)))
104, 5erclwwlkneq 30047 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 ↔ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))))
11103adant1 1130 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 ↔ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))))
124, 5erclwwlkneq 30047 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 ↔ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))))
13123adant3 1132 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 ↔ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))))
14 simpr1 1195 . . . . . . . . . . . . . . 15 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → 𝑥𝑊)
15 simplr2 1217 . . . . . . . . . . . . . . 15 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → 𝑧𝑊)
16 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑦 cyclShift 𝑛) = (𝑦 cyclShift 𝑚))
1716eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → (𝑥 = (𝑦 cyclShift 𝑛) ↔ 𝑥 = (𝑦 cyclShift 𝑚)))
1817cbvrexvw 3211 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑚))
19 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift 𝑘))
2019eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑘 → (𝑦 = (𝑧 cyclShift 𝑛) ↔ 𝑦 = (𝑧 cyclShift 𝑘)))
2120cbvrexvw 3211 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) ↔ ∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘))
22 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (Vtx‘𝐺) = (Vtx‘𝐺)
2322clwwlknbp 30015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → (𝑧 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑧) = 𝑁))
24 eqcom 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((♯‘𝑧) = 𝑁𝑁 = (♯‘𝑧))
2524biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((♯‘𝑧) = 𝑁𝑁 = (♯‘𝑧))
2623, 25simpl2im 503 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 = (♯‘𝑧))
2726, 4eleq2s 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧𝑊𝑁 = (♯‘𝑧))
2827ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → 𝑁 = (♯‘𝑧))
2923simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → 𝑧 ∈ Word (Vtx‘𝐺))
3029, 4eleq2s 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑧𝑊𝑧 ∈ Word (Vtx‘𝐺))
3130ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → 𝑧 ∈ Word (Vtx‘𝐺))
3231adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → 𝑧 ∈ Word (Vtx‘𝐺))
33 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))
3432, 33cshwcsh2id 14735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
35 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑁 = (♯‘𝑧) → (0...𝑁) = (0...(♯‘𝑧)))
36 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((♯‘𝑧) = (♯‘𝑦) → (0...(♯‘𝑧)) = (0...(♯‘𝑦)))
3736eqcoms 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((♯‘𝑦) = (♯‘𝑧) → (0...(♯‘𝑧)) = (0...(♯‘𝑦)))
3837adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (0...(♯‘𝑧)) = (0...(♯‘𝑦)))
3938adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (0...(♯‘𝑧)) = (0...(♯‘𝑦)))
4035, 39sylan9eq 2786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (0...𝑁) = (0...(♯‘𝑦)))
4140eleq2d 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (𝑚 ∈ (0...𝑁) ↔ 𝑚 ∈ (0...(♯‘𝑦))))
4241anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → ((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ↔ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))))
4335eleq2d 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑁 = (♯‘𝑧) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(♯‘𝑧))))
4443anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑁 = (♯‘𝑧) → ((𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘)) ↔ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))))
4544adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → ((𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘)) ↔ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))))
4642, 45anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) ↔ ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘)))))
4735rexeqdv 3293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 = (♯‘𝑧) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
4847adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
4934, 46, 483imtr4d 294 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5028, 49mpancom 688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5150exp5l 446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (𝑚 ∈ (0...𝑁) → (𝑥 = (𝑦 cyclShift 𝑚) → (𝑘 ∈ (0...𝑁) → (𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))))
5251imp41 425 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ 𝑘 ∈ (0...𝑁)) → (𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5352rexlimdva 3133 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5453ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) ∧ 𝑚 ∈ (0...𝑁)) → (𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5554rexlimdva 3133 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑚 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5621, 55syl7bi 255 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑚 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5718, 56biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5857exp31 419 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝑊𝑦𝑊) → (𝑧𝑊 → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))))
5958com15 101 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → (𝑧𝑊 → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥𝑊𝑦𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))))
6059impcom 407 . . . . . . . . . . . . . . . . . . . 20 ((𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥𝑊𝑦𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))))
61603adant1 1130 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥𝑊𝑦𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))))
6261impcom 407 . . . . . . . . . . . . . . . . . 18 ((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥𝑊𝑦𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
6362com13 88 . . . . . . . . . . . . . . . . 17 ((𝑥𝑊𝑦𝑊) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
64633impia 1117 . . . . . . . . . . . . . . . 16 ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
6564impcom 407 . . . . . . . . . . . . . . 15 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))
6614, 15, 653jca 1128 . . . . . . . . . . . . . 14 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → (𝑥𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
674, 5erclwwlkneq 30047 . . . . . . . . . . . . . . 15 ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑧 ↔ (𝑥𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
68673adant2 1131 . . . . . . . . . . . . . 14 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑧 ↔ (𝑥𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
6966, 68syl5ibrcom 247 . . . . . . . . . . . . 13 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝑥 𝑧))
7069exp31 419 . . . . . . . . . . . 12 (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝑥 𝑧))))
7170com24 95 . . . . . . . . . . 11 (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧))))
7271ex 412 . . . . . . . . . 10 ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧)))))
7372com4t 93 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧)))))
7413, 73sylbid 240 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧)))))
7574com25 99 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 𝑦𝑥 𝑧)))))
7611, 75sylbid 240 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 𝑦𝑥 𝑧)))))
779, 76mpdd 43 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 𝑦𝑥 𝑧))))
7877com24 95 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → ((♯‘𝑥) = (♯‘𝑦) → (𝑦 𝑧𝑥 𝑧))))
797, 78mpdd 43 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → (𝑦 𝑧𝑥 𝑧)))
8079impd 410 . 2 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
811, 2, 3, 80mp3an 1463 1 ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436   class class class wbr 5089  {copab 5151  cfv 6481  (class class class)co 7346  0cc0 11006  ...cfz 13407  chash 14237  Word cword 14420   cyclShift ccsh 14695  Vtxcvtx 28974   ClWWalksN cclwwlkn 30004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-hash 14238  df-word 14421  df-concat 14478  df-substr 14549  df-pfx 14579  df-csh 14696  df-clwwlk 29962  df-clwwlkn 30005
This theorem is referenced by:  erclwwlkn  30052
  Copyright terms: Public domain W3C validator