MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlkntr Structured version   Visualization version   GIF version

Theorem erclwwlkntr 29324
Description: ∌ is a transitive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r ∌ = {⟚𝑡, 𝑢⟩ ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlkntr ((𝑥 ∌ 𝑊 ∧ 𝑊 ∌ 𝑧) → 𝑥 ∌ 𝑧)
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡,𝑥   𝑊,𝑛,𝑡,𝑢,𝑥   𝑛,𝑊   𝑧,𝑛,𝑡,𝑢,𝑊,𝑥
Allowed substitution hints:   ∌ (𝑥,𝑊,𝑧,𝑢,𝑡,𝑛)   𝐺(𝑥,𝑊,𝑧,𝑢,𝑡,𝑛)   𝑁(𝑊,𝑧)   𝑊(𝑥,𝑊,𝑧)

Proof of Theorem erclwwlkntr
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3479 . 2 𝑥 ∈ V
2 vex 3479 . 2 𝑊 ∈ V
3 vex 3479 . 2 𝑧 ∈ V
4 erclwwlkn.w . . . . . 6 𝑊 = (𝑁 ClWWalksN 𝐺)
5 erclwwlkn.r . . . . . 6 ∌ = {⟚𝑡, 𝑢⟩ ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
64, 5erclwwlkneqlen 29321 . . . . 5 ((𝑥 ∈ V ∧ 𝑊 ∈ V) → (𝑥 ∌ 𝑊 → (♯‘𝑥) = (♯‘𝑊)))
763adant3 1133 . . . 4 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∌ 𝑊 → (♯‘𝑥) = (♯‘𝑊)))
84, 5erclwwlkneqlen 29321 . . . . . . 7 ((𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑊 ∌ 𝑧 → (♯‘𝑊) = (♯‘𝑧)))
983adant1 1131 . . . . . 6 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑊 ∌ 𝑧 → (♯‘𝑊) = (♯‘𝑧)))
104, 5erclwwlkneq 29320 . . . . . . . 8 ((𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑊 ∌ 𝑧 ↔ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))))
11103adant1 1131 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑊 ∌ 𝑧 ↔ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))))
124, 5erclwwlkneq 29320 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝑊 ∈ V) → (𝑥 ∌ 𝑊 ↔ (𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛))))
13123adant3 1133 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∌ 𝑊 ↔ (𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛))))
14 simpr1 1195 . . . . . . . . . . . . . . 15 (((((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) ∧ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛))) → 𝑥 ∈ 𝑊)
15 simplr2 1217 . . . . . . . . . . . . . . 15 (((((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) ∧ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛))) → 𝑧 ∈ 𝑊)
16 oveq2 7417 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑊 cyclShift 𝑛) = (𝑊 cyclShift 𝑚))
1716eqeq2d 2744 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → (𝑥 = (𝑊 cyclShift 𝑛) ↔ 𝑥 = (𝑊 cyclShift 𝑚)))
1817cbvrexvw 3236 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑚))
19 oveq2 7417 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift 𝑘))
2019eqeq2d 2744 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑘 → (𝑊 = (𝑧 cyclShift 𝑛) ↔ 𝑊 = (𝑧 cyclShift 𝑘)))
2120cbvrexvw 3236 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛) ↔ ∃𝑘 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑘))
22 eqid 2733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (Vtx‘𝐺) = (Vtx‘𝐺)
2322clwwlknbp 29288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → (𝑧 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑧) = 𝑁))
24 eqcom 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((♯‘𝑧) = 𝑁 ↔ 𝑁 = (♯‘𝑧))
2524biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((♯‘𝑧) = 𝑁 → 𝑁 = (♯‘𝑧))
2623, 25simpl2im 505 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 = (♯‘𝑧))
2726, 4eleq2s 2852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 ∈ 𝑊 → 𝑁 = (♯‘𝑧))
2827ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) → 𝑁 = (♯‘𝑧))
2923simpld 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → 𝑧 ∈ Word (Vtx‘𝐺))
3029, 4eleq2s 2852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑧 ∈ 𝑊 → 𝑧 ∈ Word (Vtx‘𝐺))
3130ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) → 𝑧 ∈ Word (Vtx‘𝐺))
3231adantl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → 𝑧 ∈ Word (Vtx‘𝐺))
33 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))
3432, 33cshwcsh2id 14779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → (((𝑚 ∈ (0...(♯‘𝑊)) ∧ 𝑥 = (𝑊 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑊 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
35 oveq2 7417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑁 = (♯‘𝑧) → (0...𝑁) = (0...(♯‘𝑧)))
36 oveq2 7417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((♯‘𝑧) = (♯‘𝑊) → (0...(♯‘𝑧)) = (0...(♯‘𝑊)))
3736eqcoms 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((♯‘𝑊) = (♯‘𝑧) → (0...(♯‘𝑧)) = (0...(♯‘𝑊)))
3837adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) → (0...(♯‘𝑧)) = (0...(♯‘𝑊)))
3938adantl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) → (0...(♯‘𝑧)) = (0...(♯‘𝑊)))
4035, 39sylan9eq 2793 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → (0...𝑁) = (0...(♯‘𝑊)))
4140eleq2d 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → (𝑚 ∈ (0...𝑁) ↔ 𝑚 ∈ (0...(♯‘𝑊))))
4241anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → ((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑊 cyclShift 𝑚)) ↔ (𝑚 ∈ (0...(♯‘𝑊)) ∧ 𝑥 = (𝑊 cyclShift 𝑚))))
4335eleq2d 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑁 = (♯‘𝑧) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(♯‘𝑧))))
4443anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑁 = (♯‘𝑧) → ((𝑘 ∈ (0...𝑁) ∧ 𝑊 = (𝑧 cyclShift 𝑘)) ↔ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑊 = (𝑧 cyclShift 𝑘))))
4544adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → ((𝑘 ∈ (0...𝑁) ∧ 𝑊 = (𝑧 cyclShift 𝑘)) ↔ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑊 = (𝑧 cyclShift 𝑘))))
4642, 45anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑊 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑊 = (𝑧 cyclShift 𝑘))) ↔ ((𝑚 ∈ (0...(♯‘𝑊)) ∧ 𝑥 = (𝑊 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑊 = (𝑧 cyclShift 𝑘)))))
4735rexeqdv 3327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 = (♯‘𝑧) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
4847adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
4934, 46, 483imtr4d 294 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑊 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑊 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5028, 49mpancom 687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑊 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑊 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5150exp5l 448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) → (𝑚 ∈ (0...𝑁) → (𝑥 = (𝑊 cyclShift 𝑚) → (𝑘 ∈ (0...𝑁) → (𝑊 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))))
5251imp41 427 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑥 = (𝑊 cyclShift 𝑚)) ∧ 𝑘 ∈ (0...𝑁)) → (𝑊 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5352rexlimdva 3156 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑥 = (𝑊 cyclShift 𝑚)) → (∃𝑘 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5453ex 414 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) ∧ 𝑚 ∈ (0...𝑁)) → (𝑥 = (𝑊 cyclShift 𝑚) → (∃𝑘 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5554rexlimdva 3156 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) → (∃𝑚 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑚) → (∃𝑘 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5621, 55syl7bi 255 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) → (∃𝑚 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑚) → (∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5718, 56biimtrid 241 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) → (∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5857exp31 421 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) → (𝑧 ∈ 𝑊 → (((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) → (∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))))
5958com15 101 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛) → (𝑧 ∈ 𝑊 → (((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) → ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))))
6059impcom 409 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛)) → (((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) → ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))))
61603adant1 1131 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛)) → (((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) → ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))))
6261impcom 409 . . . . . . . . . . . . . . . . . 18 ((((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) ∧ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) → ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
6362com13 88 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) → ((((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) ∧ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
64633impia 1118 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)) → ((((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) ∧ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
6564impcom 409 . . . . . . . . . . . . . . 15 (((((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) ∧ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))
6614, 15, 653jca 1129 . . . . . . . . . . . . . 14 (((((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) ∧ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛))) → (𝑥 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
674, 5erclwwlkneq 29320 . . . . . . . . . . . . . . 15 ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∌ 𝑧 ↔ (𝑥 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
68673adant2 1132 . . . . . . . . . . . . . 14 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∌ 𝑧 ↔ (𝑥 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
6966, 68syl5ibrcom 246 . . . . . . . . . . . . 13 (((((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) ∧ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛))) → ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → 𝑥 ∌ 𝑧))
7069exp31 421 . . . . . . . . . . . 12 (((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) → ((𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛)) → ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)) → ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → 𝑥 ∌ 𝑧))))
7170com24 95 . . . . . . . . . . 11 (((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) → ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)) → ((𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛)) → 𝑥 ∌ 𝑧))))
7271ex 414 . . . . . . . . . 10 ((♯‘𝑊) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑊) → ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)) → ((𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛)) → 𝑥 ∌ 𝑧)))))
7372com4t 93 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)) → ((♯‘𝑊) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑊) → ((𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛)) → 𝑥 ∌ 𝑧)))))
7413, 73sylbid 239 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∌ 𝑊 → ((♯‘𝑊) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑊) → ((𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛)) → 𝑥 ∌ 𝑧)))))
7574com25 99 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → ((𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛)) → ((♯‘𝑊) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑊) → (𝑥 ∌ 𝑊 → 𝑥 ∌ 𝑧)))))
7611, 75sylbid 239 . . . . . 6 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑊 ∌ 𝑧 → ((♯‘𝑊) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑊) → (𝑥 ∌ 𝑊 → 𝑥 ∌ 𝑧)))))
779, 76mpdd 43 . . . . 5 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑊 ∌ 𝑧 → ((♯‘𝑥) = (♯‘𝑊) → (𝑥 ∌ 𝑊 → 𝑥 ∌ 𝑧))))
7877com24 95 . . . 4 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∌ 𝑊 → ((♯‘𝑥) = (♯‘𝑊) → (𝑊 ∌ 𝑧 → 𝑥 ∌ 𝑧))))
797, 78mpdd 43 . . 3 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∌ 𝑊 → (𝑊 ∌ 𝑧 → 𝑥 ∌ 𝑧)))
8079impd 412 . 2 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∌ 𝑊 ∧ 𝑊 ∌ 𝑧) → 𝑥 ∌ 𝑧))
811, 2, 3, 80mp3an 1462 1 ((𝑥 ∌ 𝑊 ∧ 𝑊 ∌ 𝑧) → 𝑥 ∌ 𝑧)
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  âˆƒwrex 3071  Vcvv 3475   class class class wbr 5149  {copab 5211  â€˜cfv 6544  (class class class)co 7409  0cc0 11110  ...cfz 13484  â™¯chash 14290  Word cword 14464   cyclShift ccsh 14738  Vtxcvtx 28256   ClWWalksN cclwwlkn 29277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-fz 13485  df-fzo 13628  df-fl 13757  df-mod 13835  df-hash 14291  df-word 14465  df-concat 14521  df-substr 14591  df-pfx 14621  df-csh 14739  df-clwwlk 29235  df-clwwlkn 29278
This theorem is referenced by:  erclwwlkn  29325
  Copyright terms: Public domain W3C validator