| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | vex 3483 | . 2
⊢ 𝑥 ∈ V | 
| 2 |  | vex 3483 | . 2
⊢ 𝑦 ∈ V | 
| 3 |  | vex 3483 | . 2
⊢ 𝑧 ∈ V | 
| 4 |  | erclwwlkn.w | . . . . . 6
⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) | 
| 5 |  | erclwwlkn.r | . . . . . 6
⊢  ∼ =
{〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} | 
| 6 | 4, 5 | erclwwlkneqlen 30088 | . . . . 5
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 → (♯‘𝑥) = (♯‘𝑦))) | 
| 7 | 6 | 3adant3 1132 | . . . 4
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑦 → (♯‘𝑥) = (♯‘𝑦))) | 
| 8 | 4, 5 | erclwwlkneqlen 30088 | . . . . . . 7
⊢ ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∼ 𝑧 → (♯‘𝑦) = (♯‘𝑧))) | 
| 9 | 8 | 3adant1 1130 | . . . . . 6
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∼ 𝑧 → (♯‘𝑦) = (♯‘𝑧))) | 
| 10 | 4, 5 | erclwwlkneq 30087 | . . . . . . . 8
⊢ ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∼ 𝑧 ↔ (𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)))) | 
| 11 | 10 | 3adant1 1130 | . . . . . . 7
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∼ 𝑧 ↔ (𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)))) | 
| 12 | 4, 5 | erclwwlkneq 30087 | . . . . . . . . . 10
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 ↔ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)))) | 
| 13 | 12 | 3adant3 1132 | . . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑦 ↔ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)))) | 
| 14 |  | simpr1 1194 | . . . . . . . . . . . . . . 15
⊢
(((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → 𝑥 ∈ 𝑊) | 
| 15 |  | simplr2 1216 | . . . . . . . . . . . . . . 15
⊢
(((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → 𝑧 ∈ 𝑊) | 
| 16 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 = 𝑚 → (𝑦 cyclShift 𝑛) = (𝑦 cyclShift 𝑚)) | 
| 17 | 16 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝑚 → (𝑥 = (𝑦 cyclShift 𝑛) ↔ 𝑥 = (𝑦 cyclShift 𝑚))) | 
| 18 | 17 | cbvrexvw 3237 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∃𝑛 ∈
(0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑚)) | 
| 19 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 = 𝑘 → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift 𝑘)) | 
| 20 | 19 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 = 𝑘 → (𝑦 = (𝑧 cyclShift 𝑛) ↔ 𝑦 = (𝑧 cyclShift 𝑘))) | 
| 21 | 20 | cbvrexvw 3237 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∃𝑛 ∈
(0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) ↔ ∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘)) | 
| 22 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) | 
| 23 | 22 | clwwlknbp 30055 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → (𝑧 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑧) = 𝑁)) | 
| 24 |  | eqcom 2743 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((♯‘𝑧) =
𝑁 ↔ 𝑁 = (♯‘𝑧)) | 
| 25 | 24 | biimpi 216 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((♯‘𝑧) =
𝑁 → 𝑁 = (♯‘𝑧)) | 
| 26 | 23, 25 | simpl2im 503 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 = (♯‘𝑧)) | 
| 27 | 26, 4 | eleq2s 2858 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 ∈ 𝑊 → 𝑁 = (♯‘𝑧)) | 
| 28 | 27 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → 𝑁 = (♯‘𝑧)) | 
| 29 | 23 | simpld 494 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → 𝑧 ∈ Word (Vtx‘𝐺)) | 
| 30 | 29, 4 | eleq2s 2858 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑧 ∈ 𝑊 → 𝑧 ∈ Word (Vtx‘𝐺)) | 
| 31 | 30 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → 𝑧 ∈ Word (Vtx‘𝐺)) | 
| 32 | 31 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → 𝑧 ∈ Word (Vtx‘𝐺)) | 
| 33 |  | simprr 772 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) | 
| 34 | 32, 33 | cshwcsh2id 14868 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))) | 
| 35 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑁 = (♯‘𝑧) → (0...𝑁) = (0...(♯‘𝑧))) | 
| 36 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
((♯‘𝑧) =
(♯‘𝑦) →
(0...(♯‘𝑧)) =
(0...(♯‘𝑦))) | 
| 37 | 36 | eqcoms 2744 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
((♯‘𝑦) =
(♯‘𝑧) →
(0...(♯‘𝑧)) =
(0...(♯‘𝑦))) | 
| 38 | 37 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((♯‘𝑦)
= (♯‘𝑧) ∧
(♯‘𝑥) =
(♯‘𝑦)) →
(0...(♯‘𝑧)) =
(0...(♯‘𝑦))) | 
| 39 | 38 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (0...(♯‘𝑧)) = (0...(♯‘𝑦))) | 
| 40 | 35, 39 | sylan9eq 2796 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (0...𝑁) = (0...(♯‘𝑦))) | 
| 41 | 40 | eleq2d 2826 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (𝑚 ∈ (0...𝑁) ↔ 𝑚 ∈ (0...(♯‘𝑦)))) | 
| 42 | 41 | anbi1d 631 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → ((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ↔ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)))) | 
| 43 | 35 | eleq2d 2826 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑁 = (♯‘𝑧) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(♯‘𝑧)))) | 
| 44 | 43 | anbi1d 631 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑁 = (♯‘𝑧) → ((𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘)) ↔ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘)))) | 
| 45 | 44 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → ((𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘)) ↔ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘)))) | 
| 46 | 42, 45 | anbi12d 632 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) ↔ ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))))) | 
| 47 | 35 | rexeqdv 3326 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑁 = (♯‘𝑧) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))) | 
| 48 | 47 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))) | 
| 49 | 34, 46, 48 | 3imtr4d 294 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))) | 
| 50 | 28, 49 | mpancom 688 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))) | 
| 51 | 50 | exp5l 446 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (𝑚 ∈ (0...𝑁) → (𝑥 = (𝑦 cyclShift 𝑚) → (𝑘 ∈ (0...𝑁) → (𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))))) | 
| 52 | 51 | imp41 425 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((((𝑥 ∈
𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ 𝑘 ∈ (0...𝑁)) → (𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))) | 
| 53 | 52 | rexlimdva 3154 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))) | 
| 54 | 53 | ex 412 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) ∧ 𝑚 ∈ (0...𝑁)) → (𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))) | 
| 55 | 54 | rexlimdva 3154 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑚 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))) | 
| 56 | 21, 55 | syl7bi 255 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑚 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))) | 
| 57 | 18, 56 | biimtrid 242 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))) | 
| 58 | 57 | exp31 419 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → (𝑧 ∈ 𝑊 → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))))) | 
| 59 | 58 | com15 101 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑛 ∈
(0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → (𝑧 ∈ 𝑊 → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))))) | 
| 60 | 59 | impcom 407 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))) | 
| 61 | 60 | 3adant1 1130 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))) | 
| 62 | 61 | impcom 407 | . . . . . . . . . . . . . . . . . 18
⊢
((((♯‘𝑦)
= (♯‘𝑧) ∧
(♯‘𝑥) =
(♯‘𝑦)) ∧
(𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))) | 
| 63 | 62 | com13 88 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))) | 
| 64 | 63 | 3impia 1117 | . . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))) | 
| 65 | 64 | impcom 407 | . . . . . . . . . . . . . . 15
⊢
(((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)) | 
| 66 | 14, 15, 65 | 3jca 1128 | . . . . . . . . . . . . . 14
⊢
(((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → (𝑥 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))) | 
| 67 | 4, 5 | erclwwlkneq 30087 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑧 ↔ (𝑥 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))) | 
| 68 | 67 | 3adant2 1131 | . . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑧 ↔ (𝑥 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))) | 
| 69 | 66, 68 | syl5ibrcom 247 | . . . . . . . . . . . . 13
⊢
(((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝑥 ∼ 𝑧)) | 
| 70 | 69 | exp31 419 | . . . . . . . . . . . 12
⊢
(((♯‘𝑦)
= (♯‘𝑧) ∧
(♯‘𝑥) =
(♯‘𝑦)) →
((𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝑥 ∼ 𝑧)))) | 
| 71 | 70 | com24 95 | . . . . . . . . . . 11
⊢
(((♯‘𝑦)
= (♯‘𝑧) ∧
(♯‘𝑥) =
(♯‘𝑦)) →
((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 ∼ 𝑧)))) | 
| 72 | 71 | ex 412 | . . . . . . . . . 10
⊢
((♯‘𝑦) =
(♯‘𝑧) →
((♯‘𝑥) =
(♯‘𝑦) →
((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 ∼ 𝑧))))) | 
| 73 | 72 | com4t 93 | . . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → ((𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 ∼ 𝑧))))) | 
| 74 | 13, 73 | sylbid 240 | . . . . . . . 8
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑦 → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → ((𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 ∼ 𝑧))))) | 
| 75 | 74 | com25 99 | . . . . . . 7
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 ∼ 𝑦 → 𝑥 ∼ 𝑧))))) | 
| 76 | 11, 75 | sylbid 240 | . . . . . 6
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∼ 𝑧 → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 ∼ 𝑦 → 𝑥 ∼ 𝑧))))) | 
| 77 | 9, 76 | mpdd 43 | . . . . 5
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∼ 𝑧 → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 ∼ 𝑦 → 𝑥 ∼ 𝑧)))) | 
| 78 | 77 | com24 95 | . . . 4
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑦 → ((♯‘𝑥) = (♯‘𝑦) → (𝑦 ∼ 𝑧 → 𝑥 ∼ 𝑧)))) | 
| 79 | 7, 78 | mpdd 43 | . . 3
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑦 → (𝑦 ∼ 𝑧 → 𝑥 ∼ 𝑧))) | 
| 80 | 79 | impd 410 | . 2
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧) → 𝑥 ∼ 𝑧)) | 
| 81 | 1, 2, 3, 80 | mp3an 1462 | 1
⊢ ((𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧) → 𝑥 ∼ 𝑧) |