MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlkntr Structured version   Visualization version   GIF version

Theorem erclwwlkntr 29923
Description: ∌ is a transitive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r ∌ = {⟚𝑡, 𝑢⟩ ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlkntr ((𝑥 ∌ 𝑊 ∧ 𝑊 ∌ 𝑧) → 𝑥 ∌ 𝑧)
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡,𝑥   𝑊,𝑛,𝑡,𝑢,𝑥   𝑛,𝑊   𝑧,𝑛,𝑡,𝑢,𝑊,𝑥
Allowed substitution hints:   ∌ (𝑥,𝑊,𝑧,𝑢,𝑡,𝑛)   𝐺(𝑥,𝑊,𝑧,𝑢,𝑡,𝑛)   𝑁(𝑊,𝑧)   𝑊(𝑥,𝑊,𝑧)

Proof of Theorem erclwwlkntr
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3467 . 2 𝑥 ∈ V
2 vex 3467 . 2 𝑊 ∈ V
3 vex 3467 . 2 𝑧 ∈ V
4 erclwwlkn.w . . . . . 6 𝑊 = (𝑁 ClWWalksN 𝐺)
5 erclwwlkn.r . . . . . 6 ∌ = {⟚𝑡, 𝑢⟩ ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
64, 5erclwwlkneqlen 29920 . . . . 5 ((𝑥 ∈ V ∧ 𝑊 ∈ V) → (𝑥 ∌ 𝑊 → (♯‘𝑥) = (♯‘𝑊)))
763adant3 1129 . . . 4 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∌ 𝑊 → (♯‘𝑥) = (♯‘𝑊)))
84, 5erclwwlkneqlen 29920 . . . . . . 7 ((𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑊 ∌ 𝑧 → (♯‘𝑊) = (♯‘𝑧)))
983adant1 1127 . . . . . 6 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑊 ∌ 𝑧 → (♯‘𝑊) = (♯‘𝑧)))
104, 5erclwwlkneq 29919 . . . . . . . 8 ((𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑊 ∌ 𝑧 ↔ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))))
11103adant1 1127 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑊 ∌ 𝑧 ↔ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))))
124, 5erclwwlkneq 29919 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝑊 ∈ V) → (𝑥 ∌ 𝑊 ↔ (𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛))))
13123adant3 1129 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∌ 𝑊 ↔ (𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛))))
14 simpr1 1191 . . . . . . . . . . . . . . 15 (((((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) ∧ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛))) → 𝑥 ∈ 𝑊)
15 simplr2 1213 . . . . . . . . . . . . . . 15 (((((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) ∧ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛))) → 𝑧 ∈ 𝑊)
16 oveq2 7423 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑊 cyclShift 𝑛) = (𝑊 cyclShift 𝑚))
1716eqeq2d 2736 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → (𝑥 = (𝑊 cyclShift 𝑛) ↔ 𝑥 = (𝑊 cyclShift 𝑚)))
1817cbvrexvw 3226 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑚))
19 oveq2 7423 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift 𝑘))
2019eqeq2d 2736 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑘 → (𝑊 = (𝑧 cyclShift 𝑛) ↔ 𝑊 = (𝑧 cyclShift 𝑘)))
2120cbvrexvw 3226 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛) ↔ ∃𝑘 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑘))
22 eqid 2725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (Vtx‘𝐺) = (Vtx‘𝐺)
2322clwwlknbp 29887 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → (𝑧 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑧) = 𝑁))
24 eqcom 2732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((♯‘𝑧) = 𝑁 ↔ 𝑁 = (♯‘𝑧))
2524biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((♯‘𝑧) = 𝑁 → 𝑁 = (♯‘𝑧))
2623, 25simpl2im 502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 = (♯‘𝑧))
2726, 4eleq2s 2843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 ∈ 𝑊 → 𝑁 = (♯‘𝑧))
2827ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) → 𝑁 = (♯‘𝑧))
2923simpld 493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → 𝑧 ∈ Word (Vtx‘𝐺))
3029, 4eleq2s 2843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑧 ∈ 𝑊 → 𝑧 ∈ Word (Vtx‘𝐺))
3130ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) → 𝑧 ∈ Word (Vtx‘𝐺))
3231adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → 𝑧 ∈ Word (Vtx‘𝐺))
33 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))
3432, 33cshwcsh2id 14809 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → (((𝑚 ∈ (0...(♯‘𝑊)) ∧ 𝑥 = (𝑊 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑊 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
35 oveq2 7423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑁 = (♯‘𝑧) → (0...𝑁) = (0...(♯‘𝑧)))
36 oveq2 7423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((♯‘𝑧) = (♯‘𝑊) → (0...(♯‘𝑧)) = (0...(♯‘𝑊)))
3736eqcoms 2733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((♯‘𝑊) = (♯‘𝑧) → (0...(♯‘𝑧)) = (0...(♯‘𝑊)))
3837adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) → (0...(♯‘𝑧)) = (0...(♯‘𝑊)))
3938adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) → (0...(♯‘𝑧)) = (0...(♯‘𝑊)))
4035, 39sylan9eq 2785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → (0...𝑁) = (0...(♯‘𝑊)))
4140eleq2d 2811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → (𝑚 ∈ (0...𝑁) ↔ 𝑚 ∈ (0...(♯‘𝑊))))
4241anbi1d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → ((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑊 cyclShift 𝑚)) ↔ (𝑚 ∈ (0...(♯‘𝑊)) ∧ 𝑥 = (𝑊 cyclShift 𝑚))))
4335eleq2d 2811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑁 = (♯‘𝑧) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(♯‘𝑧))))
4443anbi1d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑁 = (♯‘𝑧) → ((𝑘 ∈ (0...𝑁) ∧ 𝑊 = (𝑧 cyclShift 𝑘)) ↔ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑊 = (𝑧 cyclShift 𝑘))))
4544adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → ((𝑘 ∈ (0...𝑁) ∧ 𝑊 = (𝑧 cyclShift 𝑘)) ↔ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑊 = (𝑧 cyclShift 𝑘))))
4642, 45anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑊 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑊 = (𝑧 cyclShift 𝑘))) ↔ ((𝑚 ∈ (0...(♯‘𝑊)) ∧ 𝑥 = (𝑊 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑊 = (𝑧 cyclShift 𝑘)))))
4735rexeqdv 3316 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 = (♯‘𝑧) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
4847adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
4934, 46, 483imtr4d 293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑊 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑊 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5028, 49mpancom 686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑊 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑊 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5150exp5l 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) → (𝑚 ∈ (0...𝑁) → (𝑥 = (𝑊 cyclShift 𝑚) → (𝑘 ∈ (0...𝑁) → (𝑊 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))))
5251imp41 424 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑥 = (𝑊 cyclShift 𝑚)) ∧ 𝑘 ∈ (0...𝑁)) → (𝑊 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5352rexlimdva 3145 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑥 = (𝑊 cyclShift 𝑚)) → (∃𝑘 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5453ex 411 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) ∧ 𝑚 ∈ (0...𝑁)) → (𝑥 = (𝑊 cyclShift 𝑚) → (∃𝑘 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5554rexlimdva 3145 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) → (∃𝑚 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑚) → (∃𝑘 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5621, 55syl7bi 254 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) → (∃𝑚 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑚) → (∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5718, 56biimtrid 241 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) → (∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5857exp31 418 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) → (𝑧 ∈ 𝑊 → (((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) → (∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))))
5958com15 101 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛) → (𝑧 ∈ 𝑊 → (((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) → ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))))
6059impcom 406 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛)) → (((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) → ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))))
61603adant1 1127 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛)) → (((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) → ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))))
6261impcom 406 . . . . . . . . . . . . . . . . . 18 ((((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) ∧ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) → ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
6362com13 88 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) → ((((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) ∧ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
64633impia 1114 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)) → ((((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) ∧ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
6564impcom 406 . . . . . . . . . . . . . . 15 (((((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) ∧ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))
6614, 15, 653jca 1125 . . . . . . . . . . . . . 14 (((((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) ∧ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛))) → (𝑥 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
674, 5erclwwlkneq 29919 . . . . . . . . . . . . . . 15 ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∌ 𝑧 ↔ (𝑥 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
68673adant2 1128 . . . . . . . . . . . . . 14 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∌ 𝑧 ↔ (𝑥 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
6966, 68syl5ibrcom 246 . . . . . . . . . . . . 13 (((((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) ∧ (𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛))) → ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → 𝑥 ∌ 𝑧))
7069exp31 418 . . . . . . . . . . . 12 (((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) → ((𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛)) → ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)) → ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → 𝑥 ∌ 𝑧))))
7170com24 95 . . . . . . . . . . 11 (((♯‘𝑊) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑊)) → ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)) → ((𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛)) → 𝑥 ∌ 𝑧))))
7271ex 411 . . . . . . . . . 10 ((♯‘𝑊) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑊) → ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)) → ((𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛)) → 𝑥 ∌ 𝑧)))))
7372com4t 93 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ 𝑊 ∧ 𝑊 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)) → ((♯‘𝑊) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑊) → ((𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛)) → 𝑥 ∌ 𝑧)))))
7413, 73sylbid 239 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∌ 𝑊 → ((♯‘𝑊) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑊) → ((𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛)) → 𝑥 ∌ 𝑧)))))
7574com25 99 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → ((𝑊 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑧 cyclShift 𝑛)) → ((♯‘𝑊) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑊) → (𝑥 ∌ 𝑊 → 𝑥 ∌ 𝑧)))))
7611, 75sylbid 239 . . . . . 6 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑊 ∌ 𝑧 → ((♯‘𝑊) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑊) → (𝑥 ∌ 𝑊 → 𝑥 ∌ 𝑧)))))
779, 76mpdd 43 . . . . 5 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑊 ∌ 𝑧 → ((♯‘𝑥) = (♯‘𝑊) → (𝑥 ∌ 𝑊 → 𝑥 ∌ 𝑧))))
7877com24 95 . . . 4 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∌ 𝑊 → ((♯‘𝑥) = (♯‘𝑊) → (𝑊 ∌ 𝑧 → 𝑥 ∌ 𝑧))))
797, 78mpdd 43 . . 3 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∌ 𝑊 → (𝑊 ∌ 𝑧 → 𝑥 ∌ 𝑧)))
8079impd 409 . 2 ((𝑥 ∈ V ∧ 𝑊 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∌ 𝑊 ∧ 𝑊 ∌ 𝑧) → 𝑥 ∌ 𝑧))
811, 2, 3, 80mp3an 1457 1 ((𝑥 ∌ 𝑊 ∧ 𝑊 ∌ 𝑧) → 𝑥 ∌ 𝑧)
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  âˆƒwrex 3060  Vcvv 3463   class class class wbr 5143  {copab 5205  â€˜cfv 6542  (class class class)co 7415  0cc0 11136  ...cfz 13514  â™¯chash 14319  Word cword 14494   cyclShift ccsh 14768  Vtxcvtx 28851   ClWWalksN cclwwlkn 29876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-map 8843  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-sup 9463  df-inf 9464  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-n0 12501  df-z 12587  df-uz 12851  df-rp 13005  df-fz 13515  df-fzo 13658  df-fl 13787  df-mod 13865  df-hash 14320  df-word 14495  df-concat 14551  df-substr 14621  df-pfx 14651  df-csh 14769  df-clwwlk 29834  df-clwwlkn 29877
This theorem is referenced by:  erclwwlkn  29924
  Copyright terms: Public domain W3C validator