Step | Hyp | Ref
| Expression |
1 | | vex 3435 |
. 2
⊢ 𝑥 ∈ V |
2 | | vex 3435 |
. 2
⊢ 𝑦 ∈ V |
3 | | vex 3435 |
. 2
⊢ 𝑧 ∈ V |
4 | | erclwwlkn.w |
. . . . . 6
⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
5 | | erclwwlkn.r |
. . . . . 6
⊢ ∼ =
{〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} |
6 | 4, 5 | erclwwlkneqlen 28419 |
. . . . 5
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 → (♯‘𝑥) = (♯‘𝑦))) |
7 | 6 | 3adant3 1131 |
. . . 4
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑦 → (♯‘𝑥) = (♯‘𝑦))) |
8 | 4, 5 | erclwwlkneqlen 28419 |
. . . . . . 7
⊢ ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∼ 𝑧 → (♯‘𝑦) = (♯‘𝑧))) |
9 | 8 | 3adant1 1129 |
. . . . . 6
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∼ 𝑧 → (♯‘𝑦) = (♯‘𝑧))) |
10 | 4, 5 | erclwwlkneq 28418 |
. . . . . . . 8
⊢ ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∼ 𝑧 ↔ (𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)))) |
11 | 10 | 3adant1 1129 |
. . . . . . 7
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∼ 𝑧 ↔ (𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)))) |
12 | 4, 5 | erclwwlkneq 28418 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 ↔ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)))) |
13 | 12 | 3adant3 1131 |
. . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑦 ↔ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)))) |
14 | | simpr1 1193 |
. . . . . . . . . . . . . . 15
⊢
(((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → 𝑥 ∈ 𝑊) |
15 | | simplr2 1215 |
. . . . . . . . . . . . . . 15
⊢
(((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → 𝑧 ∈ 𝑊) |
16 | | oveq2 7277 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 = 𝑚 → (𝑦 cyclShift 𝑛) = (𝑦 cyclShift 𝑚)) |
17 | 16 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝑚 → (𝑥 = (𝑦 cyclShift 𝑛) ↔ 𝑥 = (𝑦 cyclShift 𝑚))) |
18 | 17 | cbvrexvw 3383 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∃𝑛 ∈
(0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑚)) |
19 | | oveq2 7277 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 = 𝑘 → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift 𝑘)) |
20 | 19 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 = 𝑘 → (𝑦 = (𝑧 cyclShift 𝑛) ↔ 𝑦 = (𝑧 cyclShift 𝑘))) |
21 | 20 | cbvrexvw 3383 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∃𝑛 ∈
(0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) ↔ ∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘)) |
22 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
23 | 22 | clwwlknbp 28386 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → (𝑧 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑧) = 𝑁)) |
24 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((♯‘𝑧) =
𝑁 ↔ 𝑁 = (♯‘𝑧)) |
25 | 24 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((♯‘𝑧) =
𝑁 → 𝑁 = (♯‘𝑧)) |
26 | 23, 25 | simpl2im 504 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 = (♯‘𝑧)) |
27 | 26, 4 | eleq2s 2857 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 ∈ 𝑊 → 𝑁 = (♯‘𝑧)) |
28 | 27 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → 𝑁 = (♯‘𝑧)) |
29 | 23 | simpld 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → 𝑧 ∈ Word (Vtx‘𝐺)) |
30 | 29, 4 | eleq2s 2857 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑧 ∈ 𝑊 → 𝑧 ∈ Word (Vtx‘𝐺)) |
31 | 30 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → 𝑧 ∈ Word (Vtx‘𝐺)) |
32 | 31 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → 𝑧 ∈ Word (Vtx‘𝐺)) |
33 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) |
34 | 32, 33 | cshwcsh2id 14530 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))) |
35 | | oveq2 7277 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑁 = (♯‘𝑧) → (0...𝑁) = (0...(♯‘𝑧))) |
36 | | oveq2 7277 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
((♯‘𝑧) =
(♯‘𝑦) →
(0...(♯‘𝑧)) =
(0...(♯‘𝑦))) |
37 | 36 | eqcoms 2746 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
((♯‘𝑦) =
(♯‘𝑧) →
(0...(♯‘𝑧)) =
(0...(♯‘𝑦))) |
38 | 37 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((♯‘𝑦)
= (♯‘𝑧) ∧
(♯‘𝑥) =
(♯‘𝑦)) →
(0...(♯‘𝑧)) =
(0...(♯‘𝑦))) |
39 | 38 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (0...(♯‘𝑧)) = (0...(♯‘𝑦))) |
40 | 35, 39 | sylan9eq 2798 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (0...𝑁) = (0...(♯‘𝑦))) |
41 | 40 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (𝑚 ∈ (0...𝑁) ↔ 𝑚 ∈ (0...(♯‘𝑦)))) |
42 | 41 | anbi1d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → ((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ↔ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)))) |
43 | 35 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑁 = (♯‘𝑧) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(♯‘𝑧)))) |
44 | 43 | anbi1d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑁 = (♯‘𝑧) → ((𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘)) ↔ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘)))) |
45 | 44 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → ((𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘)) ↔ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘)))) |
46 | 42, 45 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) ↔ ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))))) |
47 | 35 | rexeqdv 3348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑁 = (♯‘𝑧) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))) |
48 | 47 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))) |
49 | 34, 46, 48 | 3imtr4d 294 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑁 = (♯‘𝑧) ∧ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))) |
50 | 28, 49 | mpancom 685 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))) |
51 | 50 | exp5l 447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (𝑚 ∈ (0...𝑁) → (𝑥 = (𝑦 cyclShift 𝑚) → (𝑘 ∈ (0...𝑁) → (𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))))) |
52 | 51 | imp41 426 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((((𝑥 ∈
𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ 𝑘 ∈ (0...𝑁)) → (𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))) |
53 | 52 | rexlimdva 3212 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))) |
54 | 53 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) ∧ 𝑚 ∈ (0...𝑁)) → (𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))) |
55 | 54 | rexlimdva 3212 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑚 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))) |
56 | 21, 55 | syl7bi 254 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑚 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))) |
57 | 18, 56 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ 𝑧 ∈ 𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))) |
58 | 57 | exp31 420 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → (𝑧 ∈ 𝑊 → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))))) |
59 | 58 | com15 101 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑛 ∈
(0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → (𝑧 ∈ 𝑊 → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))))) |
60 | 59 | impcom 408 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))) |
61 | 60 | 3adant1 1129 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))) |
62 | 61 | impcom 408 |
. . . . . . . . . . . . . . . . . 18
⊢
((((♯‘𝑦)
= (♯‘𝑧) ∧
(♯‘𝑥) =
(♯‘𝑦)) ∧
(𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))) |
63 | 62 | com13 88 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))) |
64 | 63 | 3impia 1116 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))) |
65 | 64 | impcom 408 |
. . . . . . . . . . . . . . 15
⊢
(((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)) |
66 | 14, 15, 65 | 3jca 1127 |
. . . . . . . . . . . . . 14
⊢
(((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → (𝑥 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))) |
67 | 4, 5 | erclwwlkneq 28418 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑧 ↔ (𝑥 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))) |
68 | 67 | 3adant2 1130 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑧 ↔ (𝑥 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))) |
69 | 66, 68 | syl5ibrcom 246 |
. . . . . . . . . . . . 13
⊢
(((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝑥 ∼ 𝑧)) |
70 | 69 | exp31 420 |
. . . . . . . . . . . 12
⊢
(((♯‘𝑦)
= (♯‘𝑧) ∧
(♯‘𝑥) =
(♯‘𝑦)) →
((𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝑥 ∼ 𝑧)))) |
71 | 70 | com24 95 |
. . . . . . . . . . 11
⊢
(((♯‘𝑦)
= (♯‘𝑧) ∧
(♯‘𝑥) =
(♯‘𝑦)) →
((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 ∼ 𝑧)))) |
72 | 71 | ex 413 |
. . . . . . . . . 10
⊢
((♯‘𝑦) =
(♯‘𝑧) →
((♯‘𝑥) =
(♯‘𝑦) →
((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 ∼ 𝑧))))) |
73 | 72 | com4t 93 |
. . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → ((𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 ∼ 𝑧))))) |
74 | 13, 73 | sylbid 239 |
. . . . . . . 8
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑦 → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → ((𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 ∼ 𝑧))))) |
75 | 74 | com25 99 |
. . . . . . 7
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 ∼ 𝑦 → 𝑥 ∼ 𝑧))))) |
76 | 11, 75 | sylbid 239 |
. . . . . 6
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∼ 𝑧 → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 ∼ 𝑦 → 𝑥 ∼ 𝑧))))) |
77 | 9, 76 | mpdd 43 |
. . . . 5
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∼ 𝑧 → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 ∼ 𝑦 → 𝑥 ∼ 𝑧)))) |
78 | 77 | com24 95 |
. . . 4
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑦 → ((♯‘𝑥) = (♯‘𝑦) → (𝑦 ∼ 𝑧 → 𝑥 ∼ 𝑧)))) |
79 | 7, 78 | mpdd 43 |
. . 3
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑦 → (𝑦 ∼ 𝑧 → 𝑥 ∼ 𝑧))) |
80 | 79 | impd 411 |
. 2
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧) → 𝑥 ∼ 𝑧)) |
81 | 1, 2, 3, 80 | mp3an 1460 |
1
⊢ ((𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧) → 𝑥 ∼ 𝑧) |