MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp53 Structured version   Visualization version   GIF version

Theorem exp53 448
Description: An exportation inference. (Contributed by Jeff Hankins, 30-Aug-2009.)
Hypothesis
Ref Expression
exp53.1 ((((𝜑𝜓) ∧ (𝜒𝜃)) ∧ 𝜏) → 𝜂)
Assertion
Ref Expression
exp53 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))

Proof of Theorem exp53
StepHypRef Expression
1 exp53.1 . . 3 ((((𝜑𝜓) ∧ (𝜒𝜃)) ∧ 𝜏) → 𝜂)
21ex 413 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) → (𝜏𝜂))
32exp43 437 1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  omordi  8397  xpdom2  8854  elfzodifsumelfzo  13453  grplcan  18637  2clwwlk2clwwlk  28714  grpolcan  28892
  Copyright terms: Public domain W3C validator