Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp53 | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
exp53.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
exp53 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp53.1 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜏) → 𝜂) | |
2 | 1 | ex 413 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → (𝜏 → 𝜂)) |
3 | 2 | exp43 437 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: omordi 8397 xpdom2 8854 elfzodifsumelfzo 13453 grplcan 18637 2clwwlk2clwwlk 28714 grpolcan 28892 |
Copyright terms: Public domain | W3C validator |